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INTERRELATION OF CALCULATION FORMULAS  

AND A GEOMETRIC MODEL OF MICROPARTICLES   

IN THE FUNDAMENTAL FIELD THEORY OF I.L. GERLOVIN 

 

The Fundamental Field Theory (FFT) developed by I.L. Gerlovin [1] 

presents a model of microparticles in the computational functional-geometric 

subspace (2 →1), which explains the absence of field radiation in stable 

microparticles.   This model is represented by two current rings (birotator) of 

discrete subparticles rotating with sublight linear velocities located in the plane. On 

the first ring of radius R1 there are n1 charged subparticles rotating with linear 

relative velocity b1, on the second ring with radius R2<R1 there are n2<n1 

charged subparticles rotating with linear relative velocity b2.  

It is known [2] that for a moving charged point particle, the electric 

component of the field of this particle is compressed in the direction of the velocity 

vector, and the magnetic component of the field appears in the perpendicular plane. 

According to the book [2, p.170], the compression coefficient of the electric field 

is determined by the linear velocity of the particle b and the angle γ between the 

velocity vector and the field direction.  

K=(1-b2 )/(1-(b* sin (γ)) 2)3/2      (1) 

Taking into account this phenomenon, Fig. 1 shows the geometrical location 

of the electric components vectors for the subparticle fields in the orbital and axial 

planes in the birotator model. 

 

 
Fig. 1. Direction of  the electric components of the subparticle fields in the orbital 

and axial, along the Z rotation axis, planes in the birotator model. 

In the birotator model, electric and magnetic forces act between the 

subparticles. Taking into account the result of electric interaction of subparticles in 

an orbit with the same sign of charge under the condition R1- R2 >>2πR2/n2, it is 
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necessary to assume their equidistant location in their orbits.  As a result, the 

partial orbital angle between the subparticles for the outer orbit will be φ1=2π /n1, 

and for the inner one  - φ2=2π /n2. According to the FFT equations, the condition 

n2<n1 is satisfied for the subparticles and, correspondingly, the condition φ1 <φ2 

is satisfied for the partial angles. This inequality means that in one outer segment 

of the orbital plane there is no more than one subparticle of the inner orbit between 

two subparticles of the outer orbit. According to the formula in Table 16.1 in book 

[1], the ratio of orbital radiuses  R1/R2=b1/b2* n1/n2. Since the angular velocities 

of rotation of subparticles on their orbits are equal to ω1=b1/R1 and ω2=b2/R2 

and their ratio will be equal too: ω1/ω2=n2/n1, i.e. ω1<ω2. Also for the values of 

angular velocities the condition ω1,ω2 >>(ω2 -ω1) is fulfilled. The latter 

condition allows us to perform in the quasi-static regime an approximate 

calculation of the instantaneous electric interaction forces between three 

subparticles for one external segment of the model with their subsequent addition 

for all n2 subparticles of the inner orbit. 

A clear explanation of the above FFT dependences is given by analyzing the 

geometrical representation of the instantaneous interaction of point charges with 

one internal and two external subparticles in one external segment on the orbital 

plane, as shown in Fig. 2. 

 

 
Figure 2. Calculated segment of the microparticle model on the orbital plane. 

This figure shows the formation of the interaction force vectors of two 

charged subparticles on the external (charges "q11i" = "q12i") and one on the 

internal (charge "q2i") orbits. In a rotating with velocity b0=(b1+b2)/2 coordinate 

system the electric component of the interaction forces of one internal subparticle 

with two external subparticles of the same segment under the condition  

b0 >>(b1-b2) can be calculated by Coulomb's law 

FE i ≈4*  q1i*  q2i /eо*  (r1-2 +r2-2 ),     (2) 

where q1i, q2i are charges of subparticles of external and internal orbits, 

eо - dielectric permittivity of vacuum, 
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r1, r2 - distances between interacting subparticles on orbits. 

In absolute value the calculated product Q of point charges of single 

subparticles of external and internal orbits for stable microparticles can be 

approximately determined by FFT formulas from Table №16.1 of the book [1]: 

Q=q1i*  q2i ≈ q1 /n1*  (q1 - q)/n2,     (3) 

where q1 is the total charge of subparticles of the outer orbit and 

q is the total charge of the microparticle in units (√hi*  c). 

Consider the geometry of an individual segment shown in Figure 2.  In each 

n (n=1: n1) segment of the outer orbit, the values of the angles are equal: 

a1= (φ2- φ1)*  (n-1) = 2π*  (n-1) * (n1-n2)/n1/n2,  

a2 = 2π/n1- a1= 2π/n1/n2*  (n2 - (n-1)*  (n1-n2)).    (4) 

At known angles a1, a2 indicated in Figure 2 design angles g1, g2 are calculated 

by the formulas: 

g1=arctg (R2*  sin( a1) /(R1-R2*  cos(a1)), g2=arctg (R2*  sin(a2)/(R1- R2* cos(a2)), 

and the squares of distances between interacting subparticles of the segment: 

r12 =R12  +R22  - 2R1*  R2*  cos(a1), r22 =R12  +R22  - 2R1*  R2*  cos(a2).      (5) 

 

Using the above equations by formulas (2-5), we can calculate for one 

segment the interaction forces between the subparticles of  the outer F1 and the 

inner F2 orbits, as well as the radial and orbital projections of these forces.  Taking 

into account the direction and influence of orbital velocities of subparticles 

according to formula (1), these projections of forces are equal: 

F1ri = (F12*  cos(g1)+ F32*  cos(g2))/(1-b1 )21/2 ,     (6) 

F2ri = - (F12*  cos(g1+a1)+ F32*  cos(g2+a2))/ (1-b2 )21/2 ,   (7) 

F1vi = (F12*  sin(g1)- F32*  sin(g2)) *  (1-b12 ),     (8) 

F2vi =(-F12*  sin(g1+a1) +F32*  sin(g2+a2)) *  (1-b22 ).    (9) 

In the above expressions for the projections of forces, it is assumed that 

positive radial projections correspond to centripetal forces, and positive orbital 

projections correspond to forces with the right direction of rotation. In the case of 

opposite charges of subparticles of external and internal orbits, the influence of the 

electric component of the field leads to the appearance of mutual attraction forces. 

Since the angular velocity of rotation of internal subparticles exceeds the 

angular velocity of external subparticles, the values of angles a1, a2 within the 

calculation segment will change in time. The period of repetition of phase states of 

subparticles in the calculation segments is determined by the difference of orbital 

angular velocities (ω2 - ω1): 

T =2π/(ω2 - ω1)=2πR1*  n2 /(c*  b1*  (n1-n2)) =2πR2*  n1/(c*  b2*  (n1-n2)), (10)   

where c is the speed of light in vacuum. 
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Taking this condition into account leads to the necessity of temporal integration of 

the calculated projections of the interaction forces (6 - 9) with discretization of the 

integration period T by at least n1*  n2 samples: 

F=∑1
T (Ft ) / n1/n2.      (11) 

For more accurate calculation of the integral value of the interaction forces it is 

required to perform discretization of the repetition period by n1*  n2*  (n1-n2) 

samples, at which the required time for performing integration calculations 

increases significantly. 

As a result of calculation of integral values of radial projections of 

interaction forces and subsequent summation of simultaneous interaction for all  

n2 subparticles of the inner orbit, we can determine the values of centrifugal and 

centripetal forces for the total masses of subparticles of the outer m1 and inner m2 

orbits and the total mass M of the microparticle: 

F1=∑1
n2 (F1ri ), F2=∑1

n2 (F2ri ),     (12) 

m1=F1*  R1/(c*  b1)2   , m2=F2*  R2/(c*  b2)2  ,   (13) 

M= m1 + m2.          (14) 

The presence of centrifugal forces in the birotator explains the reason for the 

appearance of the calculated negative orbital masses. The microparticles with total 

negative masses caused by the excess of centrifugal forces over centripetal forces 

must decay. 

The summation of the integral values of the orbital projections of the 

interaction forces allows us to find the total moments of the rotational forces of the 

orbital subparticles: 

MV1= R1* ∑1
n2 (F1vi  ), MV2= R2 *∑*1

n2 (F2vi ).   (15)  

The emergence of these moments of rotational forces is the reason for the existence 

of orbital currents from rotating discrete subparticles in the birotator.  These orbital 

currents, depending on their direction, lead to the origin of magnetic forces, which 

influence the attraction and splitting of orbits. But since the relative velocity of 

subparticles in orbits is insignificant compared to their linear velocities:  

(b1-b2)<<b1,b2, the influence of magnetic forces in the general interaction can be 

neglected. 

    

 On the rotation axis Z perpendicular to the orbital plane passing through the 

center of the birotator, the projections of the electric field strength vectors of all 

subparticles will be summed up taking into account the sign of the charge forming 

them: Ez = ∑q1i /eо /r
2 . The geometrical representation of this process is shown 

in Fig. 3. 



5 
 

   
Fig.3. Projections of subparticle electric field strength vectors on the Z axis. 

 

At arrangement on current rings of charges of opposite sign 

the total field strength at the opposition distances along the Z axis will be equal to 

the difference of the projections of the strengths: 

r1 = (R12 +z 2)  1/2 , r2 = (R22 +z2 )  1/2 , 

Ez =E1 - E2 = z /eо*  [q1/(1-b12)  1/2 /r13 - (q1- q) /(1-b22 )1/2 /r23 ], (16) 

where z is the distance along the Z axis relative to the center. 

 The integral value of the magnetic field strength along the axis Z is created by 

the orbital currents of the external I1 and internal I2 orbits, which, taking into 

account the one-sided rotation of opposite charges and the above-mentioned 

condition of the direction according to the source [2, p.208], is equal: 

 Hz  = 2π* [R22
*  I2/(R22+z2) 3/2 - R12

*  I1/(R12+z 2) 3/2 ]= 

   =c*  ((q1-q)*b2*R2/r23 - q1* b1* R1/r13 ).               (17) 

In the center of the orbital plane magnetic field is equal 

  H0 = c* ((q1-q)*  b2/R22 -q1*  b1/R12 ). 

 

 Based on the above formulas (6-17), a calculation program was developed 

using the MATLAB program package and the calculation was performed for the 

optimal particle of the first row 1.19.1 ("proton"). The initial data of this 

microparticle were taken from Table №18 of the source [1]:  

n1=6330, n2=5494, R1=2.20712e-16(m), R2=1.91304e-16(m), q1=1.24052(√hi* 

c), q=1.0(√hi* c), b1=0.9988374223667, b2=0.9987217396663. 

Reference values of physical constants and experimental data as of 2022 were used 

in the calculation: 

c=2.99792458e8(m/s), eо =(4π* 9e9) -1 (F/m), µо =4π* 1e-7(H/m), 

e=1.602176634e-19(С); Ai=7.2973525356e-3; 

mp=1.672621192369e-27(kg). 

 For this microparticle, the integral values of the masses of the external and 

internal rotators are obtained as a result of PC calculations: 

 m1= 1.01234217783030671e-26(kg), m2=-8.453407829166879e-27(kg), 

and total mass of a microparticle 1.19.1 

  М=1.670013949139830e-27(kg). 
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At more complete time integration the calculated value is obtained 

  M= 1.67003161212e-27(kg). 

 The calculation results show that even for the minimum discretization at 

time integration the deviation of the calculated value of the proton mass relative to 

the experimental value is minus 0.00156. 

 

 The dependences of electric and magnetic field strengths of the microparticle 

1.19.1 calculated by formulas (16, 17) along the rotation axis Z are presented in 

Figs. 4, 5. These dependences show the maximum value of the electric field 

strength at a distance of 0.7R1 from the center of the birotator and the maximum 

(modulo) value of the magnetic field strength in the center of the birotator. 

 

 

 

Fig.4. Electric field strength of microparticle 1.19.1 on the rotation axis. 
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Fig.5. Magnetic field strength of microparticle 1.19.1 on the rotation axis. 
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