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The monograph is the first to give the theory of all kinds of interactions in matier: strong,
electromagnetic, weak and gravitational, i.e. it presents the Unified Theory of Fundamen-
tal Field (TFF) which is based upon a new paradigm called the Paradigm for Viable and
Developing Systems (PVDS). The book is ihe result of the fifty year long work of 2 small group of
scientists who were not afraid of new 1deas.

The results obtained on tie basis of TFF and PVDS are discussed in the book. These vesulis,
when developed und used, should help the Mankind 1o live in peace with Nature and avoid
environmental disaslers.
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PREFACE TO THE AMERICAN EDITION

Adversity has mothered many children and here in Russia all free-thinking persons are chal-
lenged by her stern ways. For over fifty years while the tides of war, environmental destriction, so-
cial disruptior, and political repression swept across myccuntry, asmall group of scientisis struggled
in isolation to realize Albert Einstein's dream of a Unified Theory of Field.

The realization of Great Physicist s dream gives birth to the unlimited possibilities that Fiastein
foresaw as he toiled virtually aloae for thirty years defending the reality and necessity of a unified
picture of the universe. This monograph takes the reader into that interesting journey and to its ulti-
mate conclusion. The theoryof the unity of Nailure revealed in these writings holds immense signif-
icance for our time as it opens the doorwey to new, unlimited possibilities for scicntific progress
without violent destruction of Nature.

Before the publication. in Russian of this monographin the USSR in December of 1990, the obstacles
had been pul for over 50 years in my way to publishing and even discussing the resulls of myresearch.
Ower this half century arichbodyof materials has been amassed, unread arid unwanted. Therefore,
in the book we have chosen to unfold this theoryin a journal-iike style to dexcribe in a more complete
way the accumulated results of so long a period of research The reader is therefore challenged to
read carefully, wor d by word. A senterice skipped may mean anidea [ost. As zach author’ s ideas tend 10
progress from the preceding writings, the reader can trace the development of this theoryover the decades.

“TO LiVE WITHOUT DMSASTERS ( Principles of unified theory of all interactiors in matter)”
provides both the theoretical and experimental basis of all physical interactions in matter. sirong,
weak, electromagnetic and gravitational. The Unified Theory of Fundamental Field (TFF) is based
upon anew paradigrn called the Parcdigm for Viable and Developing Systems ( PVDS ). While a grea:
manymathematical calculaiions are included to support the material, anyreader mayget general
ideas of the theory. And manyreaders can use the obtained results in their practical activity. This
book as a whole is intended jor those who are interested in concrefe suggestions towards directing
both scicnce and technology in harmony with Nature to prevent further destructior of our fragile planet.
Physicists will take professional interest in the entire book, and many sections should S of partic-
tlarinterest to other .Tpﬂ(fﬂ'fl sts as listed below, 1tis myhope, nowever, that all readers wiill veniture
beyvond the sections intended for their own specialny (o fully appreciate the results presented in the
book:

— mathematicians: sections 1.8, 1.9, 2,3, 15, 17. 28, and appendices 1, 2, 4;

— philosophers: preface, introfuction, sumeiary, sections 2, 2, 20, 30 and appendices 3, 7.
Qund 10;



— blologists: sections 2, 23,25, 26, 27. 28, 29, 30 and appendices 7 and 10;
— economists and socialoglsts: sections 2, 3, 21—30 arid appendices 8, 9, 10;
—chemisis: sections 2, 3, 23, 28 and appendices 3, 4, 7 and 8;

—engineers, upplying results of the above-mentioned sciences: sections 2, 3, 11, 12, 21—30,
and appendices 3, 4 and 8.

Finally, I would like to take this opporfunity to express my heartiest thanks (o V. N. Suntsov, the
editor of the English version of this book, for his greal efforts in translating and perfecting the text,
and to Michael Mitchell with his assistanis for their noble help in the work of the author and his col-
leagues as well as in the publication of the English version of this book.

The Author



People, | loved you:
Be watchful.
J. Fuchik

WHAT IS THIS BOOK ABOUT?

This book presents a reasoned, practical methodology for mankind to sustain a world-wide
weli-being within the constraints of the ecological viability and health.

Scientific circles are fraught with doomsayers. Questions ot mankind's suivivability abound.
And the support of these arguments have their poiint it markind continues to attempi tc bring
three or four billion people in developing nations into medern economiies with modern society's
level of consnmerism utilizing today's technologies. Itis clear that if we stay bound within the ex-
isting physical, chemical, and biclogicai methodologies, long-term survivability is indeed a global
concern.

This book offers a pathway out. The auihor and his colleagues are convinced through their
own varied research that the answers to such global preblems lay in the new scientific direction,
where all fields of science caa be unified and specified under the regvlarities following from the
new Paradigm for Viable and Developing Systems (PVDS), preseated ‘n the book.

Theidea that all fields of science, natural (physics, chemistry, biology) as well as social (psy-
chological, economic, political, and sociological), could be unified under a general “Systems
Theory™ has been widely discussed but naturally did not become the principal methodclogy in
the scicntific community. There are maay reasons for this situation. The inost obvious has been
the scientitic community’s own shoricomings in unifying attempts. Scientists have been para-
digm-bound, Some have begun with dialectical materizlism, while others choosz dialectics ir its
general form only, or others began from theological principles, and some have chosen to general-
ize from the laws of some particular system, such as the theory of dynainic systems, to a general
theory. This enumeration could be endless, but each attempt falls short of its iniended goals.

Vernadsky and Chardin first introduced the concept of a global system, the novsphere, under
which laws ruling animate and inanimate matter alike would be unified. But while they postulated
the existence of universal laws it was never demonstrated. There was no foundation — the new
paradigm. The author, while keeping the general concept of a nnospheve, first managed torealize
the elaboration of a methodological and mathematical paradigin upon whicn a unified system
theory, such as the noosphere theory, cou'd be constructed. The Paradigm for Viableand
Developing Systems which is described in the present work, lays cut the methodological and
mathematical requirements that a system must obey tosurvive and evolve, PV DS was first formu-
lated as far back as 1946, bul the author chose then not 1o publicize his work. Before 1989, despite
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the innevalive ideas put into practice by Mr. Gorbachev, any attempt to defend PVDS was con-
sidered an “heresy” in my country and would hzve utterly deprived the author of the possibility
of pursuing his work. This precaution proved its value, allowing tie author to pursue hiz work
without repression.

Although FVDS has applications in many scieatific fields, during these past fifty years the
author was primarily concerned with the elaboration of a Unified Theory of Field. In preseniwork
the Theory of the Fundammentai Field is substantizlly discusszd. It illustrates the vse of PVDS in
the elaboration oi physics theory.

After 1985, the participaiion of scientists from a variety of fields allowed PV DS to be applicd
io fields of science cutside the scope of physics which is chown in the book. The present work also
brirgs insights into the practical application of PV DS, notably in technologies and in en-
vironmental precervation.

Wher. Albert Einstein firsi formulatzd the requirements for a Unified Theory of Field, he
noted that it snould describe the tour types of interaciion of all matter (strong, or nuclear; weak,
or radioactive decay; eleciromagnetic and gravitational) as differznt marifestations of tne same
fundamental field. The unification of the first three forms of interactions is now commenly re-
ferred to as “Grand Unification” whilz a theory encompassing all four forms of interaction is
called “Super Unification”. Some even use the term “theory of everything™, hinting at the possi-
tility that science could strmble upon some form of immutable truth. The auathor is firmly con-
vinced, and hopes he can convince the reader as well, that the concept of a “theory of everything”
is only symptomatic of those scientists’ presumptucus and nzive belief that they can become
masters of the absolute truth. The great maiority of the laws of nature are still quite beyond our
reach.

Theauthor is firmly convinced that Natuie is not only substantizlly richer than our concept of
it, but more critically, it is permanently developing. We have no reason to believe that the rate of
Nature's development is slower than our rate of the Nature cogniticn. The immutable truth may
in fact be a receding goal.

The author dees not recognize the erroneous ideas of the existence of the immutable truth.
Mankind needs nc priests of science, but dedicated toilers able to elucidatz a clear and faith-
ful path for universal and sustainable progress. Based upon the results obtained by the author
and his colleagues, a ceriain siep has been taken.

The fellowing waterial will speak for itself. Flowever, the resuits offered for your judgement
would have been substantially diminished without the active support of numerous collcagues.
friends and simply genuine toilers of science, who assisted the author.
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In this manner, the author addresses his gratitude to the bright memory of kis collesgues
M. M. Protodyakonov, V. A. Krat, §. V. Ismailov. [. Ya. Pomeranchuk, B. M. Kedrov,
F. lu. Zigel, V. 1. Menzhinsky, A. R. Regel, . A. Rapoport, B. P. Peregud, and is giateful
to V. V. Nazarov, R. R. Zapatrin, V. P. Perov, lu. K. Balenko, N. §. Lidorenko, A. P Ka-
zantzev. A. A. Denisov, D. D. Ivanenko, la. P. Terletzky, O. B. Firsov, E. V. Gnilovskuy,
I. A. Ivaniov, V. la. Kreynovich, V. A. Pinsker, A. M. Protodyakonov, M. S. Cnedieschev.

The author is gratefu! io the memnbers of the Leningrad Polytechnic Institute’s interde-
partmental seminar on “Development and Use of a Paradigm for Viable and Developing Systems
and a Unified Theory of Fundamental Ficld” for their active part in the discuszion and for their
criticism and recommendaticns on materials included mn this work. Discussions 2t that semirar
greatly influenced the contents and quality of the work offered for the reader’s consideration.



Many physicists are working on Crea-
tlon of the great picture urrf*ﬁrg

'M:Merfu.Mnn-w p!ams
w&gmmm
what this great picture i like.

R. Feynman
THE AUTHOR'S CLAIMS

The Unified Theory of the Fundameatal Field is the unified theory of all interactions in mat-
ter. TFF unifies ali knowa interactions in matter — strong, weak, eleciromagnetic and gravi-
tational — considering them as different manifestations of the same fundamental ficid. TFF is
constrictad on the basis of a new paradigm for viable and developing systems.

On the basis of TFF, the periodical law of elementary particles is discovered. Found within the
bonnds of this law is the sysiem of formulae for computing the masses, charges, spins, magnetic
moments, lifetines and other quantum numbers of all known experimental elementary particles
aswell as still unknown. The coincidence of theoreiical and experimental data within the bounds
of accuracy of the theory and experiment is complete.

Ini TFF first have been:
+ found the physical phenumena responsitle for quantum and relativistic properties
and the houndarles of the domaln over which these properties prevail;

» discoveraed the unified approach to describing the bosons and fermions which is
n:ore wide than supersymmetric found later and being intensely developed now;

« determinec the structure of physicai vacuum [PV) regarded as a structura! materlal
form, formulated and calculated the physical vacuum propertles;

* proposed and Invesilgated the string model of particles, though the very term “string”
has not been eariler proposed in TFF. The above-mentioned string model of particles
is more deep and essentlally more rich than the string and superstring models being
widely develaped now;

+ revealed the physical nature of quarks, tachyons, virtual states and some other pos-
tulaied objects of modern microphysics;

+ pradicted a series of new phenomena, including those with important applied value.
Most significant is the direct use of physical vacuum energy-and high temperature
superconductors.



‘TFT does not contradict known physical theories, but gives an underlying reason to their pos-
tulatzs and reveals the boundaries of use of these postulates. Thus TFF, far from being an alter-
native to generally accepted principles, simply develops and decpens the perceptions of these
theories in full agreement with the correspondence principle.

TFF nas a peculiarity which is important to underline here. In the book it is shown how all
types of interactions are obtained and how the constants of these interactions are calculated from
one system of equations representing the Triunity Law discovered ia the theory. Itis demon-
strated that the proper constant of “strong gravitation” predicted by A. Salam. but st'll unfound,
corresponds to each constant of interaction by means of the Unified Fundamental Field and fol-
lows tne same equations.

There is an opinion ofien expressed that the fifth significant digit contains modern physics. It
follows from TFF that the tenth significant digit contains tire physics of matter.

Since ii is assumed that the reader pocsesses some knowledge concerning the principles of
modern physics and mathematics, no explanavions are given when the terms, concepis and sym-
bols adopted in modern physics and mathematical literature arc used.

Asarule, the natwral system of unitsin which i = ¢ = 1 or G= /= c = i (the Plank system) is
not used because the principal attention in ihe book is paid 1o physical significance. Exceptions
are made mainly in formulae generally known or in referencies to equatioas taken from the works
of other authors. These exceptions are evidert and have no comments attached. For this reason,
the SI system of units adopted in technical sciences is not utilized, but the physical one has been
selected throughout the work.

So the Paradigm for Viable and Developing Systems is elaborated and the mathematical
method of its use in differsnt sciences is described. Additionally, the author demonstrates that
PVDS may be applied to solve a series of problems not limiied to physics, buiin other natural and
social sciences, as well. For a more thoroagh understanding of PVDS, the unified physical theory
(TFF) is given in detail in this book as an example of what can be constructed in other spheres on
the basis of PVDS

The tirst problem to be discussed is the construction of the unified theory of field. From here
the book shail begin.



INTRODUCTORY INFORMATION

NEW, NON-STANDARD, AND GFTEN USED IN MONOGRAPH
CONCEPTS, DEFINITIONS, AND NOTATIONS

PVDS is the Paradigm for Viable and Developing Systems — the methodologiczl
and mathematical base of the future unified law {or living and inanimate matter.

LTF is the unified theory of field which unifies all kinds of interactions in mat-
ter. In literature one can meet the following names of UTF: “Extra-Super llnifica-
tion”, “Super Unification”. The theory unifying strong, electromagnetic, and weak
interactions is called “Grand Unification™.

TFF is the theory of fundamental fieln {a UTF version) developed on the
PVDS besis and describing all kinds of interactions in matter. TFF gives a unified
description of the field, and the geometric construction of its sources-charges. it is
also a theory which explains relativistic and quantum phencinena.

FF is the fundamental field in TFF. The fundamental charge is the FF charge.
li differs from that of the electromagnetic field, because the force field originating
in the wholz snbspace due to the fundamental charge has the source piaced in the
structure symnmetry center and not at the location of thz charge,

Matter is the material cbject possess'ng mass considered as the measure of
inertia. The mass may be positive, negative, imaginary or even equal to zero (when
the positive and the negative masses constituting the investigatm object are squal),
vet such an object should possess the inertia mass.

PV is the physicai vacuum considered as the peculiar kind cf matter. It is res-
ponsible for quantum and relativistic properties of all material budies.

EPs are the elementary particles. in TFF these are quark siructures observable
in the laboratory subspace.

EPVs are the elementary particles of vacuum representing fermion-antifermion
pairs of virtual “bare” elementary particles, pariicle-antiparticle pairs, supersym-
metric partners of elementary particles of a special sort.

BEPs are the “bare” elementary particles (fermions) not possessing the quark
structure and being neither EPs nor quarks. In a free state they are not observable
in the laboratory subspace.

VPs are the virtual particles. They are the elementary particles observable in
the second and third subspaces and unobservable in the first (laboratory) subspace.

ESM is the enclosing space of the material world (macro- and microcosm). It is
2 sum of subspaces in which a complete description of the Universe and its prin-
cipal constituents, i.e. EPs and EPVs, is necessary and sufficient.

FB s the fiber bundle, a mathematical notion widely vsed in modern mathema-
tics. It represents a svstem of subspaces (the term “subspace™ is the synonym of
the terms “fiber” or "base”), where the space including all the elements of con-
struction is called an enclosing space (ES) and subspaces embedded in it are di-
vided into the base and the fibers. The hase and the fiber have only one common
point.

SM is the spatial metamorphosis. A new notion introduced in the theory dis-
cussed, SM dstermines different geometrical forms of the same object realized in
the subspaces of the whole enclosing space in FB. The existence of SM puts a set of
strict requirements on the character and essence of mappings between subspaces.
10



Just the realization of these requirements provides the conditions for the viability
of an object and its ability to develop.

0SS is the Null subspace, a fundamental subspace considered as the foundation
of the macro- and microcosm unity in the world of matter, the subspace in wiiich
a scalar component of the fundamental field is revealed completely and directly.

VSS is the physical vacuum subspace, the subspace in which quantum and re-
lativistic properties of malter originate. Only the interactions of the physical object
with PV which occur in VSS determine the presence or absence of its quantum and
relativistic properties, their character and features.

15S is the first subspace, the base of the fiber bundle in the enclosing tardyon
space (v never exceeds ¢), the subspace in which"EP and EPV are directly reveaied
as a unit. In 1SS the structures of EP and EPV do occur under the Schwarzschild
sphere «f a biack microhole and may be revealed only as the mapping of the pro-
cesses going on in the subspaces of a deeper level (for example in EES and 35S).

£S5 is the second subspace, the subspace of the microcosm in which the inter-
actions of the FF vectorial component and the EP and EPV structure are directly
revealed. The processes going on in 255 are responsible for originating the ob-
servahle masses, spins, magnetic mornents, and some quantum numbers of EPs and
EPVs. These parameters are observed in 1SS as the mappings of the particle para-
meters in 2SS and may be theoretically calculated on the basis of the physical
mapping discovered in TFF and the consideration of the EPVs influence upon these
parameters.

388 is the third subspace, the deepest subspace in ESM. It is the subspace where
the structure of the main particle of matter — the fundamenton —is revealed. Ac-
cording to the rate of fundamenton excitation its parameters are observable under
the mapping onto 258 and 1SS as different BEPs and EPVs. 3SS is the base of
the fiber bundle in an enclosing tachyon space where greater velocities than that
of light are adepted.

£=0, V, 1, 2. 3 are the indices of the Null, physical vacuum, first, second, and
third subspaces, respectively. They are bracketed when they may be taken for a
tensor index or for a sign of another mathematical origin.

ESI is the enclosing space number one enveloping €SS, VS5 and 35S.

ES2 is the enclosing space number twe enveloping 255 and 3SS.

ES3 is the enclosing space number three enveloping 155 and 2SS.

Fundamenten is the elementary particle of matter which is represented in 355
as the principai (fundamental) dipole of the FF charges. In other subspaces it is
revealed either as EP or as the virtual state of EP or EPV. It represents in TFF
the development of the concept of "maximon™ (M. Plank), “[riedmon™ (M. A. Mar-
kov), “plankeon™ (K. P. Staniukovich)

CSS is the calculation subspace (a functional-geometric subspace). It is the
model used to determine all the physical and geometric parameters mapped from
one subspace onto another, for example, S5 (3 —+2), 5SS (3= 1), 8S (2-+1).

CF is the coordinate frame.

NCF is the natural coordinate frame in which kinematical description of an
object in basic geometry and its dynamical description in pseudo-Euclidian or pseudo-
Riemannian geometry may be correlated between each other.

PLM is the Periodic Law of Microparticles (elementary particles) found on the
TFF basis.
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TL is the Triunity Law, the principal TFF law unifying space-time-maller and
requiring the relation belween them nol only in the case of gravitational interac-
tions (as in GR) but under all kinds of interaclions in matler.

VTG is the vacuum theory of gravitation developed on the TFF basis by
I. L. Gerlovin and V. A. Kral.

Relativism is the fundamental properly of EPs and EPVs which means the
invariability of the cquations describing lhese parlicles under transformations fol-
lowing from the Triunity Law, in particular this is the invariability under the Lo-
rentz transiormations required by SR.

Magnetic charge is the charge of the fundamental lield responsible for the mag-
netic properties of FF and revealed directly only in 355 and not revealed in 15S
and 25S.

String is the linear domain of the FF manifestation along which the FF pro-
perties are localized.

Quantum properties of matter are the fundamental properties of EPs, EPVs, the
particles generated by them (nuclei, for cxample), and the systems of particles (for
example, atoms and molecules).

Quantum properties of the microcosm are due to the muitiplicity of space-time
dimensions and fibration of the enclosing space of the Universe as well as to the
dominating part of PV in the EP and EPV properties formation in 15S. Because
of it the classical and quantum properties of EPs and EPVs are revealed in different.
subspaces and are indispensable of all EPs, EPVs, and the structures created by
them. Quantum and classical properties of microcosm particles are the two sides
of their unified description within the TFF bounds. In this description, besides the
comimon classical and quantum properties, there are also "unified properties™ which
arc neither quantum nor classical ones, first introduced in the TFF description of
the microcosm.



PART |

THE INITIAL PARADIGM.
MATHEMATICAL AND PHYSICAL FUNDAMENTALS
OF THETHEORY

In the science sphere the authority
of a thousand is not worth the
simplest reasons of one.

Galiteo,

<I THE STATEMENT OF THE PROBLEM.
SUBSTANTIATION

OF THE INITIAL PRINCIPLES, ANALYSIS
AND DEFINITION OF THE PRINCIPAL CONCEPTS

In this section a brief discussion is given of tke initial principies and matpemiatical
construction laid down into the basis of TFF (subsection 1.1) and a detailed analysis is given f
the statement of the problem of UTF construction (subscctions 1.2--1.9j.

1.1

The transition from the scale of ranks of quantum objects
in modern physics

to the system of discrete structures of matter in TFF

The most solid basis of the modern conc=ption of the microcosm physics is a notion of the scale
of ranks of quantum objects [1 . In a great degree this notion correlates with the ideology of stan-
dard model being developed now (2].

The scale of ranks of quantum objects as the basis of methodological approach of inodern phy-
sics of microcosm is shown in Table 1.1.

Table 1.1
Tiansition  energy, Typical size,

Quantum  ranks AE.eV o
Malecular-crystalline <1 1074 + 107 |
Atomic i 107
Nuclear 10%% 10712

Subnuclear 10*? | 10712
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Each rank represents a separate branch of modern physics. The ranks are sharply charac-
terized by the featuies of the material structures discnssed in the corresponding branch (molecules
an crysials, atoms, nuclei, elementary particles). The term “rank” is used in this potion tostress
the discrete gap of properties uader transition from one kind of structure to another. So, the boun-
daries of transition energy and the typical scales of iength are sharply defined. Within any struc-
ture there is its own spectroscopy with intervals between the levels of the order of AE.

T'he virtual particles (VP) turn out to be beyond the bounds of the above-meniioned clas-
sificaiion [3, 4 |. They are postulated as particles nnobservable in principle, though they are
considered to havs the same quautum numbers as their 1eal analogues have. Yet, such quan-
tum numbcors do not obey the princinal cquation of relation between the energy E and the
momazantum p

E* = pic? + m*, (L.1)

The struciural elements of PV, which is considered as mzterial form, are also beyond the
bounds cf this classification [5—7 1. Though an pinion is widely spread that PV is not mersly a
concept of the lowest level of elementary particles state but aiso represents 2 structural material
form, this opinion is not generaily accepted.

The hierarchy of the above-mentioned scale does not include objects of the Universe (stars,
star-clusters, plancts) as well as the physical fields. TFF is considered as the basis of the theory
of matter and claims to broaden the concept of the scale of ranks of guantum cbjects in such a way
that all matter bt not a part of it is inciuded.

In TFF the matter is defined as 2 material form possessing mass as the measure of inertia. The
mass may be positive, negative or even imaginary but it has to be a quantum number charac-
terizing any structural element of matter,

All the above-mention=d material structures are matter.

Nowadays physicists do not know aav structures which are devcid of mass. The objects wiose
masses are eqnai to zero in some coordinate frame (for example, photen) are not devoid of mass,
it reveals in other cocrdinate frames. Besides, if the mass value equals zero it may correspond to
the point of transirion from positive to negative mass. Nevertheless, there is no reason to consider
that all maierial structures exisiing in nature possess mass. Moreover, there are philosophical and in-
tuitive reasons to consider thot naturs uses (and it seems that this use is especially wide in living
structurcs) material forms which are devoid of mass as measure ot inertia. This point of view has
its right to exist. If it turns out to be valid this will mean a substantial decrease of the area where
thz unified theorv of field (UTF} isvalid. UTF describes only material objects which possess mass as
measure cf inertia.

Questions relatea to the hypothesis of the existence of the material forms which are devoid of
measure of inertia are discussad in the last sections of the monograph.



According to TFF, ail structures of matter form a closed self-consistent system of discreie
structures so that the scale of ranks of quantum objects is merely a part of such system, though this
part is a very substantial one.

According to TFF, molecules, crystals, atoms, nuclei, subnuclear structures are situated
in the first subspace (153) which is not the space enclosing the whole matter but is merely the base
of one of the fiber bundles in this enciosing space. According to the definition of a fiber bundle
other subspaces embedded in a generai fiber bundle “are attached™, as mathematicians call
it, to the base of the fiber bundle in the only point. At the same time the principal parameters
observable in 188 (for example, mass, charge, spin, magnetic moment,eic) are formed in
more deep fibers but are observed in the base of the tiber bundle. Because of this fact only, we
cannot exactly calculate the values of the above-mentioned quantum nnmbers if we inves-
tigate processes only in the 185 without attracting information from other elements of the
enclosing space.

It is becausc of this fact only that we have ‘o use the calculus of probability methods. In the firsi
subspace we can describe the system only by means of the siate vector 1§ ) and the vector ( ¢ | cou-
jagated with it, Here we are righi to speak only of the probability of particle transition: from the state
I, ) to the state Iy, )

Py = 10, iy ) 17 (.2

in this case we have tc interpret the measured values as the proper values of some operator A,
acting upon the given state of the system.

In TFF it is shown that the uniqueness of probabilistic estimation of characieristics observable in
188 (such uniqueness had been proved as far back as by generally knewn J. von Nenmaun
theorem) is due to the fact that the principai characteristics of the physical system just oniy reveal
in the laboratory subspace (158} but are formed in other subspaces — 285, 358 and VSS. ltis im-
possible in 185 to observe this process of formation because these subspaces have the only com-
mon point. However, we are able not only to estimate the observation probability of the parameiers
characterizing the system in the laboratory subspace but accurately calculate their values, if we
know the motion laws in any subspace and the mapping laws between the subspaces. But such cal-
culation is possible only in those subspaces where the unknown parameter is not only observed
but also formed.

According to TFF, EPs havean apparent structure in th= second subspace. 2585 is the subspace
of virtual states unobservable in principle in the laboratory subspace. In the second subspace the
main properties of particles are formed. Under being mapped onto the laboratory subspace, these
properties give the mass, charge, spin etc in it. Knowing how these properties are formed in 258
and how they are being mapped onto 158, we are able tocalculate exactly all characteristics of EPs
under tne interaction between EPs and physical vacuum. This possibility discovered in TFF
is one of the principal results of the theory.
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Thecomplete setof elements of the whole anclosing space, i.2. ihe base of the fiber bundle and
fibers, is found in TFF. These elements of the fiber bundle are alsocalled subspaces in the papers
on TFF.

Thus, in TFF the concept of the scale of ranks of quantum objects is generalized up to the closed
system of discrete siructures. The closed system of discrete structures (CSDS) in TFF issketched
inFig. 1.1.

In TFF the CSDS of matter is described in the multidimensional fiber bundie {8, 9, 10, 11].
Many investigators have come to the conclusion that it is necessary to get out of the Procrusteau
bed of the only space in which all the objects of matter without any exception are embedded now
[9—i3). However, the unified georaetrical approach toall structure elements of matter is realized
onlyin TFF [14 ]. It shouid be noted that of late these ideas were approached ip modern gauge
theories [15, p. 93—95].

The realization of the approach mentioned above is the main conients of this book, but here
we give a qualitative description of the essence of CSDS of matter in the theory, so that the reader
could better undersiand the foerthcoming detailed discussion. We shall give a brief aescription of
the entire CSDS of matter (Figs. 1.12nd 1.2).

By now, the structures of matter included in the scale of ranks cf quantum objects turned out
to be successfully described by means of modern quantum theories only beczuse they really
reveal in the only space-time commeon for them. In TFF, as it was mentioned above, this space
{four-dimensional pseudn-Euclidian or pseudo-Riemannian one) iscalled the first
(laboratory) subspace. Virtual states exist in another subspace-time, i.e. 288. In TFF the noticn
of virtual state has the following sense: this is the state of all elementary particles, revealing as
well as not revealiug directly in 158, and possessing geometrical-dynamical structure, directly
revealed in the corresponding subspace and responsible for these elementary particle properties,
direct!y ur indirectly revealed in 158. The subspace of virtual states, i.e. 288, is a fiber in a certain
enclusing fiber bundle in which 1SS is the basz. The unification of the first and second subspaces
is calied the third encolsing space (ES3).

PV torms a special subspace, the subspace of the physical vacuum. It is also a fiber, but this
fiveris embedded into another enclosing space called the first one. The firsi enclosing space
(ES1) unifies the Nuil subspace, 35S and VSS. The Null subspace is the base of this fiber bundle.
0SS is the geometrical structure of cur whole Universe, the spatial part of which is the three-
dimensional sphere S

The third subspace is of a specizl meaning in the described geometry. This is the subspace of
the primary particles of matter which are called fundamentons in TFF.

A fundamenton is the primary and the only particle of matter which exists in 358 and is the
mapping of the 055 cell. All EPs observed in 185 and 288 (virtual states) are the mappings of
properties of a fundamenton, which isin some orother excited state, onto these su bspaces. Thus,
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observing, for example, a proton or 2n electron in 158 (ihe laboratory subsoace) , we fix the map-
ping of one or other excited state of th= fundamenton onto the laboratory subspace. The same
goes with all the rest of EPs and their anti-particles.

In TFF the PV is a structural material form which conzists of elementary particles of vacuum.
EPVisa virtual system consisting of a “barc” elementary particle (BEP) and its anti-particle.
BEPs are structural forms of matter existing only in 288. In 158 only some of BEPs reveal, inter-
aciing with physiczl vacuum in such a way that informatior: of their existence may geiinto 155,

A photon is 2n excited state of EPV. The quark structures are formed by unified bar= FPs and
EPVs. These structures are observable in the laboratory subspace as usval EPs (subsection 5.7).
Quarks, which are structural elements of particles, represent excited BEPs ans EPVs. During
many years of the theory development such anapproach made it possible to receive unique results
mentioncd in the preface and substantiated below.

To nur deep conviction, it is impossible to comprehend this radically new approack in a nght
way without a preliminary substantial analysis of the evolution of all concepts used in this approaca.
This analysis is offered in subsections 1.2--1.9.

5 iR
The unificd theory of field

A. Einstein proposed an idza of the possibility and necessity of U'TF creation as far back 1sin
1908--1910 and was actively working in that dircction since 1920 [16 1.

The idea was not acceptead by most physicists. Moreover, the opinion was formed that
UTF creation was impossible in principle. The attempts of A. Einstein and his few associates
to create UTF were condemned. Even A. F. loffe called Einstein's persistent striviags fer
UTF creation {17, p. 73] the “maniacal passion”. Most theorist- physicists remained vnder
such a deiusion until 1979, when A. Salam, 5. Weinbe-g, Sh. Glashow won the Nobel prize for
the claboration of the unified thcory of electroweak intzractions.

Nevertheless, the program of creation of the unified theory of field and the first resuits ob-
tauied on this way were openly and directly published in 1967 [18 ], and some ir:itial ideas were
published already in 1945 [19]. Butin 1946 Lvsenko phenomenon proved 10 work, znd the
author’s work [19 Jwas announced "sciology™; no doubt, the author was deprived notonly of
the possibility for discussion but also of the right to defend his ideas.



13.
On the internal structure of e'ementary particles

Up to the end of the fifties the discussion of the internai structure of EPs was a generally ac-
cepted taboo. So, ir the text-book by L. D. Landau and E. M. Lifshitz [20, p. 31 ] it was directly
said: “ The notion of elemcntary partizles means particles whichn take part oniy as a unit in ail
physical phenomera, that is, to speak of their parts makes no sense”. As the result,
the I, L. Cerlovin's paper, in which the structure of EPs was discussed, was taken out of the Soviet
Physics JETP) Journal in 1953, thongh the galley-proof had been signed, and iu the paper thare
was areference to the work of H. Honl [21 |in which a similar appreach was discassed, so the
taboo turned out ta wock.

Only after R. Hofstadter’s experiments in 1955— 1958, which broughi him the Nobel prizein
1961, the crroncous concept that EPs never and nowhere could reveal their internal structure was
rejected. Yet, the I. L. Gerlovin's papers on the properties of EPs internal siructure were net ac-
cepted to publicavion in JETP in 1962 and in the Letters io JETP even in 1973, The inertia of the
taboo still remained, and it was in spite of the fact that L. de Broglie with his colleagues [22 | had
already proposed a “votative” model of elementary particies and P. Dirac [23 ] had discussed an
elementary particle of the finite length scale.

Itisimporiant to note that the difficulties connected with the correct description of the motion
inside EP withiu the bounds of SR still remained. Thev were noted in the 5th (1967) and 6th
(1972) editions of “ Theory of the field” by L. ). Landau and E. M. Lifshitz, tc say nothing about
the periodica! and monographical literature.

Thus, the recognition of the possibility to discuss the EPs internal structure in principle did
not mean that the problem of correct description of this structure was selved. A coniradictory ap-
proach to this problem remained. On the onie hand, there was a general reccgrition of the reality
of the constitients of hadrons consisting oi quaiks, partons, on the sther hand, the description of
the mecnanism of the subparticles movion inside EPs was under prohibition, as it had been pre-
viously. Besides the difficuities of correct description of this inotion within the bounds of SR,
there is a firm couviction that the motion of elementary particles, all the more of their
constituents, cntirely iacks determinism and has only the probabilisiic character, always and
everywhere,

As1tis shown below, in TFF there ic found a non-contradictory realisiic internal structure of
EPs, wellagreed with the experiment andiramovable principles of modern physics, Yet, this siructure
cannoi be placad on tie Procrustean bed of the scale of ranks of quantum objects and demands
the transition to thc scal= of ranks of structural objects of matter (see subsection 1.1).



1.4.
Determinism and quantum properiies of EPs

The question whether determinism could be allowed uader investigation of EPs and their con-
stituents resulted in 2 stormy discussion in scientific liierature which A. Einstein even called a
“drama of ideas™. In the soviet scientific literature this question was practically not discussed.
everyone agreed to consider that there was no determinism and it could rot be, and any opposite
point of view was prohibited. At the same time this principal question of modern physics is far from
being solved, and naturally its discussion continues abroad, even in special editions for wide
audience [24 ].

It is generally known that L. de Broglie, E. Schrodinger ard especialiy A. Einstein did not ac-
cept Copenhagen purely probabilisiic interpretation of quanium mechanics. As a result of the dis-
cussion at the Solvey congress in 1927 the leading physicists adopted this interpretation and enly
A. Einstein continved to consider that “God does not dic2”. In 19352 A. Einstein presented two
papersof D. Bohm [25 ] for publication. In thosz papers a question was put cf the pessibility of ax-
istence of the hidden parameters, returning determinism into quantum theory.

Those papers encouraged L. de Broglie to give up the decision of the Solvey congress of 1927
and return to his initial ideas of the possibility 10 retain determinism in quantum theory. As it is
of greatimportance weshall give his statement on this question [26 ]: “Some persons raay certain-
ly accuse me of inconstancy, when they see that | had abandoned my initia! atiempts and during
25 years had been discussing Bohr's and Heisenberg's interpretation in all my works, and now |
again have doubts as regards this and put a question to myself whether my tirst orientation was
right in the long run... The history of science shows that the progress of science was constanily
slowed down by tyrannical influence of some conceptions which turned cut io beconsidered in the
long run as dogmas. That is whv we should periodicaliy thoroughly revise the principles which
had been accepled as complete and had not been discussed any more... Anyhow, it is certainly
useful 10 attack again a difficult problem of (he inter pretation of wave mechanics in order o see
whether the imerpretation, which is now considered to be orthedox, is reaily the only one which
we couid accepl™.

The question of D. Bohm’s hidden paramcters was an object of a stormy discession. The most
cxact result of this discussion was formulated by G. Lipkin [27 |: *Ta give a strict proof thad the
hidden parameiers do not exist, ceriainly is impossible”. Yet, the introduction of the hidden
parameters, according to D. Bohm, merely broughi the complication of the mathematical ap-
paratus but did not give the posstbilitics to receive any new resulls.

So, a search of interpretations alternative to that of Copenhagen continucs.

K. Tojoky |28 | has shown that the non-stationary Schrodinger cquation may heve an exact
solution localized in space. He called these solutions *the wave complexes™. He has shown that
therr interaction result in L. de Broghe's relation and thatin the limil these complexes allow (he
description by means of the classical motion of material points,



Recently Cramer [29)] has shown that a deterministic exchangeable interpretation cf
quantum mechanics is possible where the wave function is a real wave spreading in space but not
a formal mathematical “ probability amplitude”. However, the given here attempts and many ot-
hers to find an alternative to the probabilistic interpretation of quantum mechanics have not
yielded positive results suitable for use. Tney only carried the conviction that the problem exists
and demands solution.

It seems to be especially important to emphasize the conclusions which follow directly from
the analysis of numerous attermpts to find a deterministic approach to the interpretation of the
fundamentals of guantum mechznics.

Firstly, the impossibility, in principle, to cognize the nature of a specific motion of quantum
objerts (e.g., an electron in the atom) has not been proved by anybody. Yet, this taboo continues
to exist, though it is maintained only by philosophic agnosticism, a rather doubtful
subsiantiation.

Secondly, practicaliy all the attempts to solve the problem of the interpretation of the quantum
mechanics principles were reduced to the introduction of new concepts, ideas and objects whose
moiion was described only inone and, asarule, in the four-dimensional nen-fibered spacc. Many
works of the last decade are characterized by the transition to the description of micro-objects in
the multi-dimensional fiber burdle. Yet, this transition did not concern the postulates of probabi-
listic intespretation of quantum mechanics, they were left without change.

Thirdly, in =tring and superstring theories where micro-objects are being discussed not 25
zero-dimensional points but asone-dimensional objects, the complete applicability of all general-
ly adopted postulztes of quantum mechanics is also not subjected to any doubt. At the same time
many papers ar: pubiished where string objects are described as classical ones, though they
obviously mean micro-objects. The following internal contradictior is left without any attention:
if ali quantuin objects, in principle, under no conditions may be described by classical or quasi-
classical methods, then how can they be first described by classical equations and then those clas-
sical equations are formally quantized and it is considered 1o be correci? If the classical state
cannot exict then what is being quantized?

There are some facts that directly contradici the probabilistic interpretation of the nature of
quantum objects. According to the generally adopted interpretation, the angular distribution of
the electron pesition in the atom has equal probabilities. The preferential localization of an elec-
tron in some aiomic zones is prohibited in principle. At the same time experimenis are known
showirg that under ccrtain conditions an elecirn in the atom chooses zones of preferential
lcealization ia which it is to be found for the most part of time or always. These experimental facts
are substantially analysed, for example, in the works of M. M. Prolodiakonov and E. S. Makarov
139, 31 |. It is noteworthy that thesc experimental facts can be correctly explained only on the
basis of TFF, the faciis emphasized by the authors of thesc works.
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Conciuding our discussion on ihe interpretation of the aatere of quantum phenomena we should
like to emphasize thatall accumulated facts, in which the quantum properties of matier revea|, are ob-
served only in our space whick we called the laboratory one. If we consider the above-mentioned
laboratory space as the base of a fiber bundie, then on the basis of the presantly knowi theoratical
and experimental data nuthing could be said whether the same quantum properties would or
would notreveal in the fibers attached to the base in one common poict. Thisis the fact whichcan-
not be ignored sticking to the common taboo.

In other words, the hypothesis that micro-objects, a complete description of which is possible
onlyin multi-dimersional fiber bundie, reveal quanium properties only in one of subspaces (in
one fiber) and do not reveal them in other subspaces (fihers) , in noway contradicts the known ex-
perimental data and well grounded principles of modern physical theories. This hypotnesis is no
mere than a new correct approach fo the interpretation of the nature of quantum phenomena.

The above-mentioned hypothesis, as it is clear from subsection 1.1 aud from the detaiied dis-
cussinn below, plays an important role in the fundamental physical and mathematical construc-
tions of TFF.

1.5.
Physical vacuum

The formation of the primary concept of modern physics, which is the physical vacuum (PV),
winds its way through many errors and delusions. Since Aristotle times up to the beginning of XX
century the concept of mechamcal ether as a material structuve penetrating ihroughout the werid
nad been the foundation of practically all physical theories.

The recognition of relativistic theories SR and GR resulted in the replacement of ether by ab-
solute void, the curvaiure of which delermined gravitation and, as it was assumed, other physicat
fields. Ether as a material medium was rejected.

In the beginning of the thirties P. A. M. Diracin his workson quantum theory introduced a no-
tion: of some special ether, filled up with particles of microcosm having negative energy. In 1953
when he discussed “ihe situaiion with ether in physics” 132 ], he continued 1o insist on iis exis-
tence. However, a complete thecry of ether. according to Dirac, failed to be created. Therefore, a
concept of curved void continned to dominate in physics.

The experimental discovery of corrections to the magnetic moment of an electron as well
as the shear of the fine siructuie level in the hydrogen atom made physicists provide surrcunding
medium with such notion as “vacuum corrections”. Yet, the matenality of PV was a taboo as
before.

The concept of PY, generally accepied now, had been formed by the eighiies. PV is con-
sidered to be the lowest energy state of quantum fields which nevertheless is characterized by ab-
sence of any real particles. All quantuin numbers of PV are considersd to be equal to zero. Al tiie
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same time FV is being provided with growiug numbers of properties, in ne way explained, but
strictly postulated. For example, it is believed that it is possible to receive real particles from
emply PV by acting on it with the particle creation operator. There is no hint at the mechanism nf
this process. Mcreover, the possibility cf the existence of such an intelligible mechanism. that
could be desciibed, is subjected to doubr.

The existence of difterent viriual states of elementary varticles in physical vacuum is
postulated. 1t is known only that virtual particles exist and have postulaied properties, but their
natureis in no way explained. Any attempts to explain it are the generally accepted taboo.

Though PV is considered tc be the lowsst energy state of quantum ficlds this stats is provided
with the possibility of degeneration under which vacuum acquires the whole spectrum of different
“zero” states. The physical rature of this correct consequence of formal calculations is still
obscure.

In the paper on TFF published in 1867 [18 ] the following hvpothesis ou the nature and struc-
ture of physical vacuum was discussed for the first time. Under the annibilation of the particle-an-
tiparticle pair these particles do not vanish, as it is believed now, but they are combined into 2
system which is called theelementary particle of vacuum. In our laboratory space in the non-
excited statz EPV has all qguantum numbers equal to zero. These are the primary virtual particles
which the entire PV consists of. As we can see below such a concept of PV corresponds te all
experimental data and unquestionable theoretical concepts. In 1876 Sudarshan and his collea-
gnes [5 ] repeated the abeve-mentioned hypothesis and showed that it resulted in the concept of
PV as a certain superfluid quantum liquid. The above-mentionad paper on TFF and the develop-
meai of the idea of such physical vacuum in papars of 1969, 1973, 1975 133, 34, 7 1were not known
to Sudarshan’s group, so the latter did not refer to them.

In 1978 Sudarshan with his coileagues (35] repeated also the second idea, which was
containedin the papers on TFF — the idea on the possibility of UTF construction by means of the
above-mentioned concept of PV. Yet, at the same time they left without any change other con-
cepts not compatible with this hypothesis. That is why up to now they did not manage to develop
UTF, though they continue tc work in this direction very actively [6 ] (the iast paper in collabo-
raiion with Vigier).

1.6.
Tachyons

Since the mum=nt of genera!l recognition of SR, that was about 1910—1915, up to the
begirning of the sixties it had been a common opinion of physicists that there were no particles in
nature with velocities exceeding the speed of light. Some papers where the possibility of such
motion was meniioned did not influence this unanimous opinion, though not a few outstanding
scientists were the authors of the papers {36 ). In the sixties this taboo was subjected to doubt.
And a term tachyon was introduced into physics. [t was applied to the particles movine faster than
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light. By 1986 more than 700 papers had been already published on the problem of tachyons.
Most of them recognized the possibility of the existence of such particles and a great possibility
was foreseen of theirimportant part in future theories. A major contribution to the tachyon theory

development was made by Recami group (see, for example, [37, 40 * )and the pioneer papers
by Ya. P. Terletzky [41, 421.

Thus, the years-long taboo on the superiuminal particies was shaken, but up ic now it is far
from being broken. The principal argument of the taboo supporters comes to the followiag. Ifitis
assumed that in our world the particles moving at a speed below the speed of light, i.e. “tardions”™
exist alongside with particles moving at a speed above the speed of light, i.c. “tachyons” then the
causality principle is vioiated [43 ). Such difficulty exists. All numerous attempts to get over this
difficulty have yielded no result. In TFF it has been surmounted.

So, we may formulate the following conclusion. Tachyons and tardions cannot exist and
reveal in the same space because it wouid violate the causality principle. The causality principle
will not be violated if tardion moiicn is allowed in onc fiber of a certain enclosing space and
tachyon metion is allowed in another fiber, which is a complementary subspace to the former
fiber.

Thus, the remaining difficulties as to the construction of the realistic tachyon theory can be
surmounted, preovided thai tardioas and tachyons exist only in different fibers of the same
enclosing space, that is what TFF realizes.

1.7.
Black heles in mega- and microcosm

While finding a solution of GR equations in a domain with the radius equal toor lower than the
gravitational radius rg = 2mG/ ¢ 2 (numerical coefficien! on the right hand side can be equal to
1 or 1/2) certain difficulties arose [44 ], so this domair was announced to be “non-physical” 2nd
was excluded from the consideration. Up to the fifties this one more tabco still remained, until a
corresponding redefinition of coordinates was stated, which ailowed the consideration of the
processes occurring in this “forbidden domain”. So the notion of a “black hole™ (BH) appeared
together with GR. The BH theory is being actively elaborated [45, 46 .

Though the taboo was abolished as to the consideration of macroscopic BH, many inves-
‘tigators retained it in respect of the possible BH existence in microcosm [47 ]. Now there are many
interesting mathematiczl treatises in BH theory (especially see the paper [46 )). Yet, these
treatises leave the question of physical nature of BH open.

“)Here and turther on referencesare gi ly i th 1 hright rding 1o th thor'sep'alon. In subrequent
ul'st-n:ellheworal‘lu.urnnupi-'nu"o?l?t::bru:'lmo.ul-iﬁh.abhpll :u’:ﬂ-'u'_' areariing Ll i e
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Thus by now, there were no sufficient reasons to affirm whether BHs really exist in nature
and where they should be observed — in macro- or microcosm, or may be in both.

In our opinion, the vacuum theory of gravitation (VTG) [48—52 ), developed on the basis of
TFF, has shown convincingly what is the physical nature of BHs origin and that they are ihe ob~
jects of microcosm but not megacosm. TFF shows the rightfulness and validity of the predictions
which the papers by M. A. Markov [53—55 ] and K. P. Staniukovich [§6—357 ] contain. There is
tne affirmation in these papers that the black micro-hole with the Plank radius plays the most fun-
damental role in the elementary particles formation. The last papers on UTF showed again the
aciuaiity of suck approach. The development of this problem will be a subject of discussion in one
of the sections of this book.

1.8.
Triunity: space-time-matier

In the main equation of GR

Ry— 284 (R~ 24) = -"—:,i T 1.3)

A. Einstein was the first to have stated reiation between the three fundamental concepts of
physics: space-time-matter. It was this wiunity that stimulated the idea of the possibility of UTF
creation. Yet, ontheright hand side of this equation there is the energy-momentum tensor T as-

sociated with the investigated matter and the interaction constant G related only to gravitation.
Neither Hitbert, nor Weii, nor Eddington, nor Einstein [58, 59 ], nor their numerous followers
110] could inanage to unify gravitational and eleciromagnetic interactions within the bounds of
the principal equation of GR. the left hand side of which was interpreted as an empty space with
curvature.

A. Salam proposed the mosi interesting idea that thz relation between the space-time and the
maiter which had been found by A. Einstein could hold for other kinds of interactions, if the
strong gravitation took place with another constant of the relation, which is by many orders
greater than G. Many attempts to realize this A. Salam idea are known (see [60, 61]). Yet, until
now, they have not had any success. The difficulty consists in the fact that such gravitation was
not nanaged to be realized within the bounds of GR. Besides, the second difficulty appears con-
nected with the solution of the triunity problem: if the dependence (1.3) is interpreted as the field
equaticn then the energy-momentum tensor T, of this field is identical with zero. The transition

to the strong gravitation gives the same result.
A. A. Lagunov with his colleagues [62—65 Jconvincingly showed that the difficulty relzted to
the equality of the energy-momenium tensor to zero was not surmounted, in principle. They came

io the conclusion that GR was net complete and that it was necessary to develop a new theory of
gravitation — the relativistic theory of gravitation (RTG). InRTG T, is not equal to zero. Yet, it

26



does not allow 1o resirict the equation 1o the type of (1.3), Now it is premature to judge whai con-
tribution 1o ihe complete theory of gravitation would be made by RTG. Itis the preblem of the fu-
ture. Yet, the transition from GR to RTG does not remove ihe difficulties connected with the
solution of the problem of deveioping the triunity for different material forms and interactions,
that was put forward by A. Einstein, but he did not manage to solve it. This is mainly connected
with thefact that GR is supposed to generalize the laws discovered in it over other interactions (for
example, strong gravitation of A.Salam), while RTG sharply restricts the theory within the
bounds of gravitation.

The problem of the complete formulation of the Triunity Law for all types of matter (of course
not substance generally) is one of the principal problemsin TFF and due attention will be paid to
it below.

19.
On multidimensional spaces and fiber bundies

Principal physical theories, namely classical mechanics of Newton, SR, GR, non-relativistic
and relativistic quantum mechanics, electromagnetic theory of the field, quartum electrody-
namics, were constructed in one real space [66 |. The processes which occurred in the imaginary
space were considered “non-physical*. Meanwhile, substantial results were accumulated which
cast doubt on the righifulness of this taboo. Among such results we should mention papers of H.
Weil [67 ], T. Kaluza [68 ] and of course the result obtained by all the authors iavestigating black
holes [12]. According to that result we turn out to be in the imaginary domain when crossing the
Schwarzschild sphere,

Thereis another taboo logicaily inseparable from the one mentioned above. Inall theoriesthe
mentioned above processes are considered either in the three-dimentional Euclidian space, or
pseudo-Euclidian Minkowski space, or pseudo-Riemannian one, introduced by A. Einstein
under the formulation of GR. Spaces with a greater number of dimensions (multi-dimensional),
all the more fiber bundles, were not practically considered in physics up to the recent time. Their
use in realistic theories was also a taboo.

For a long time theoretical works using multi-dimensional spaces and/or fiber bundles werz
considered as the approaches using sophisticated, formal-mathematical methods, having
nothing to do with real processes occurring in nature. There was nothing said of heuristic value of
modern mathematics achievements. The papers on supersymmetry [69, 70, as well as on strings
and superstrings [71—73 ], made physicists think it over for the first time whether surrounding
naiure realized the multi-dimensional spaces and fiber bundles. This possibility to lift another
taboo filled many physicists with enthusiasm and papers on supersymmetry, supergravitation,

strings and superstrings began to take more and more volume in the publications of the recznt
years.
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Itis easy to see that the question about the reality of the processes occurring in malti-dimen-
sional spaces and fiber bundles is direcily connect=d with the reality of the processes occurring in
imaginary domains, because the mathematical structure of multi-dimensional spaces and fiber
bundlesis sure to contain such domains. Elegance, logical completeness, productivity of works on
supersymmetry [T4—77 ], strings and superstrings (78—82]inspired a hop= for a great
prospect of such works.

However, more and more difficulties related to the physical interpretaticn of the obtained
results began to accumulate. [n the basis of these difficulties ther= is the following problem: in our
world, called as previously the laboratory space, the processes are cbserved either in the three-
dimensional Euciidian space, or in the four-dimensional time-space. To realize the transiticn
from the multi-dimensional space and fiber bundle to the four-dimensional time-space we have to
make the redundani spaces and coordinates in some way compact. To make things clear it is im-
portant rot only to find a formal mathematical solution of this problem but to clear up its
reasonable physical interpretation. Though many a hundred of qualified investigators are taking
part in these works the problem remains unsolved and, mor=over, the difficulties in its solution
continue to accumulate.

In the very beginning of the development of TFF [7, 14, 18, 19, 33, 34, 48—52, 84—87 | the
paradigm was !aid down into its basis which contained riecessary and sufficient requirements for
existence of viable and developing systems (see section 2). In this paradigm and its realization in
the above-mentioned papers on TFF there was a solution of the problem of physiczl fundamentals
of lawfulness of the physical objects description in multi-dimensional spaces and fiber bundles.
Unfortunately, this mathematical basis of the discovered physical regularities had not been quite
undersiood up to the recent years. [n this connection, in the works on TFF there were attempts to
use the new mathematical apparatus called at first dicomplex formalism (34 ], and later on dis-
crete-coniinuul geometry [7 ). However, only in the beginning of the eighties it became quite clear
that the paradigm and TFF deal with a new interpretation concerning the already known (in the
main part) formalism of modern mathematical theories. It allowed to describe many results ob-
tained in the works on TFF by using the language of those mathematical theories. This deepened
and broadened the theory itself, made it more clear and brightened the deep correlation between
the works on TFF and many of the latest investigations connected with the attempts to construct
UTF.

Besides, it became possible to recognize deeper the heuristic value of many divisions of

modern mathematics [9, 88—94]. In the book the abuove-mentioned questions are discussed
in detail.
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Résumd

Cenzluding the brief analysis and definition of the principal concepts and initial principles of
TFF it-seems necessary to remind the reader of some historical facts which have substantial
methodical vaiue for the understanding of lawfulness of some new approaches used in TFF.

1. After the Yukawa's prediction of the existence of the meson responsible for nuclear forces
the muon was discovered. For 12—135 years all physicists of the world believed that nature real-
ized meson nuclear forces by maans of the muon. This error was corrected after the pion discovery
and it was clear from the experiment thai the muon was a certain special type of a heavy electron.
It has been agreed not to mention this general delusion.

2. For about twenty years it was believed that the field equations were generally not perspec-
tive in the theory of elementary particles. It was considered that s-matrix and group approaches
were sufficient and unique. Especially vividly this point of view was discussed in the paper 190]
published no more than 9 years before the Nobel prize was given to the author of the development
of the field theory of electroweak interactions. They try to bury in oblivion this period of genera!
delusion.

3. For many years most physicists were considering the method proposed by Regge [65]and
known in physical circles as “reggistics” to be cardinal in the process of constructing the elemen-
tary particles theory, Their hopes did not come true. "Reggistics” turned cut to be a rather specific
feature. This general delusion is also not practically mentioned.

4. There was an especially dramatic downfall of the general belief in the fact that the law of
space even parity conservation is universal. The violation of this law for weak interactions, which
was predicted in 1956 and experimentally confirmed in 1957, was quite a surprise for most
physicists.

5. A list of other ideas and principles, which got through a bright booin and afterwards were
forgotten and rejected, can be easily centinued, but here it is not necessary. The birth and death
of some or other ideas, the perspectiveness of which was overestimated, are natural for the
development of any science. Yet, it resulted and continues to result in the artificial slowing down
of science, if in any given moment of the rise of some or other ccncepts they were considered the
immavable truth, and the contradictory suggestions were rejected. And just because of this ap-
proach, which is difficult to call a scientific one, the works on TFF suffered and continue to suffer.
[t was always possible to contrapose them some or other, popular at the time, dirsciion and then
to taboo them.

Seven taboo once put on the results obtained in TFF, were rejected a long time ago, but the

label of “sciology " given 1o the theory by the supportersof the Lysenko phenomenon cuntinues
o exist.

6. This book is addressed to those scientists who consider that: fivstiy, the Lysenko
phenomenon has noright to exist;
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secondly, the point of view adopted by the majority of specialists in some or other sphere of
physics cannot be considered as the immaovable truth, and the works which contradict this “truth”
cannet be tabooed;

thirdly, there are no priests in science and therefore, the specialists working in the direction
of the unified theory of field which, according 1o their own opinion, has not been constructed yet,
are not the specialists in this future theory but they are merely the specialists in certain methods
of developing UTF. That is why they canaot be the only judges in the question what direction in
the coastruction of UTF would be promising in the long run. Ali the more, of course these scien-
tists cannoi decide the fate of the already existing unified theory of field, let them use their right

to construct another theory, if TFF as the unified theory of all known interactions, does not suit
them.



PARADIGM
FOR THE INVESTIGATION
OF VIABLE AND DEVELOPING SYSTEMS
1S THE METHODOLOGICAL AND MATHEMATICAL BASIS
FOR CONSTRUCTION OF TFF AND A NUMBER OF OTHER THEORIES

2.1,
Formulation of the problem

As far back as in the beginning of our century academician V. I. Vernadsky proposed and
deveioped anidea that the Hemanity on the Globe and surrounding it living and inanimate nature
make some unity, existing accordiug to the general laws of Nature. He called this unity the noo-
sphere.

The ideas of V. I. Vernadsky and some other cur scientists (N. F. Fedorov, V. N. Sukachev,
N. V. Timofeev—Resovsky, A. A. Bogdanov) were substantially developed by academician N. N.
Moiseev [96, 97 . He showed that the discovered by Darvin triad — heredity, variability and
selection has tc play an important role in the evolution of all the elements of noosphere. A great
contribution to this global question was made by works of I K. Prigogine [98, 99 ]and some other
foreign scientists, especially of P. T. de Chardin [100 |.

Yet, the theory of noosphere stiil does not exist, it is being developed. The First step in
the development of this theory, evidently the most important one for the fate of civilization on the
Globe, could be the methodological, philosophical and mathematical basis, i.e. the paradigm oa
the basis of which such a theory could be developed. We shall call this basis the Paradigm for Vi-
able and Developing Systems.

22,
Papers and facts which can be laid down
in the basis of the paradigm

PVDS was formulated as far back as in 1946 as the basis of TFF construction. The paradigm
itself was not published because the possibility of its use in politics, economics and other sciences
were discovered at once. In the stagnation years such publication was impossible and even might
deprive a small collective of its supporters of the possibility to work at all {as it happened to
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N. 1. Vavilov and other pioneers in science). Only in 1969--1970 the author of PVDS dared to
publish certain ideas of the paradigm. He did it in-the form of *science fiction” under a pen-name
[101 ). The first scientific publication of PV DS took place only in 1988 [102].

The absence of the paradigm as the fundamental support slows down practical use of the
theory of systems in many spheres of science. We see it by the example of modern theoretical
physics.

By now the necessity to form a new paradigm in theoretical physics has become completely
mature. From the thirties the paradigm named “classical physics” began to be substituted by the
paradigm based on the relativity theories (SR and GR) and quantum physics. Intuitively the es-
sence of this paradigm isclear. Yet, it has not been formulated up to now. Moreover, now works on
so-called “quantum logic” are intensely developing to form such paradigm.

The stormy development of modern physics during recent years showed that the “quantum-
relativistic” paradigm became old before it was born. A. Einstein was the first who felt it. He did
not accept the “quantum logic” as the basis of modern physics up tc his last day. L. de Broglie for-
mulated his upinion on these questions rather definitely (see section 1). P. A. M. Dirac was of the
similar opinion.

In a number of papers publisked in the International Journal of Fusion Energy [103]in 1985
basing on the analysis of the results of recent experimenis in the sphere of quantum radiophysics
it is directly said of the necessity of the “...belated revision of axiomatic concepis of modern
physics”. Alistcf such examples can be continued. Yet, the necessity of such a radical reconstruc-
tion of modern phyvsics is far from being gencrally accepted.

We showed the necessity of PVDS development. Yet, to censtruct PVDS, it was necessary to
answer such questions as: what is the essence of the general law of nature, providing viability of
all mentioned above systems, and by means of what mathematical apparatus can this law be
described and used to construct a future theory?

Since 1946 many works have been published which gave the possibility to describe PYDS fun-
c¢amentals in medern language because these works directiy approached PVDS. By now PVDS is
approached by the works on the systems which are far from equilibrium {95—99 ], on string and
superstring theories [78—82 ], within the beunds of which many physicists now try to solve the
problem of constructing the theory unifying all interactions in microcosm, especially this con-
cerns works on TFF, based on PYDS. According to our opinion, modern formulation of PYDS
should be the following.

23,
Fundamentals of the paradigm

Any theory basing on PV DS has tosatisfy the following principles, which constitute the basis
of the paradigm:

32



1. For the complete description of any viable and develeping system it is necessary to consider
it being situaied simulianeously in different subspaces, i.e. fibers of a certain fiber bundle.

2. Thespace-time structure of the system in fibers (base) of the enclosing space under any tno
matter how cardinai) differences obeys the unified (for all fibers) Triunity Law of space-time-mat-
ter. In other words, space metamorphosis (SM) exists in ail viable systems, under which a given
system has consisient but different space-time structures in different fibers (and the base) of the
enclosing space. The example of the use of this principle for BEP in TFF is shown in fig. 2.1.

3. In respect to a given subspace (thc base and/or the fiber) any subspace complementary to
it, embedded in the compiete enclesing space, is always situated in the imaginary domain, In this
case the imaginary domain is not a formal-mathematical mode but a real structurai feature of all
viable and developing systems.

Mote. The firm three principles charsclerize the conditions of stability of a systew, its viable steadfastmess.
Tobeﬂublelnamtmnotm}ymhlclnnm moment the system should satisfy certain requirements of the
la the p of life and the ability not only to development but elso w0 self-development.
Trh:mtl‘vep*h'clplnchlmMrequmummwnummﬁmlforlmmnmmﬂm
ping. Self-deveiopment Is one of the primary principles of a viable system. In the process of self-devesopment the
system cun also be subjecied 1o time metamorphosts but in cootrast to space meiemorphosis tils type of meta-
morphosis cen fail o held for sysiems satisfying PVYDS.

4. The connection between spaces (fibers) or betweeun the base of a given fibration and the
fiber is possible only along the information channel. Along this channel the information is spread
not only of the processes occurring in the space, the origin of information, buialso  the signals
controiling gensral processes. Thus, the information is interpreted in a broad sense.

5. In the staticnary regime along the infermation channel there goes the signal which can
bring only negative entropy into the subspace which it enters.

6. The developmeni of a viable system is realized by a sharp increase of flow of information
carrying negative entropy. This information may also contain signals which control the Darvin
development triad, i.e. variability, heredity and selectien.

If the flow of negative entropy dominates over the production of positive entropy then the sys-
tem is capable of self-organization,

7. The penetration of the signal carrying positive eatropy into the information chananel or
break of information channel carrying negative entropy brings disease or death to the system.

8. If the closure and/or commutativity of the mapping diagram describing al! the information
channels of the enclosing space is broken then the system loses viability and is sure to die.

The enumerated eight principles of PVDS substantiaily restrict 2n infinite set of solutions of
the equations of the mathematical theories of dynamic systems, fiber bundles, mappings and
other theories used for the investigation.

1]



Null subspace 1 st subspace
["ll!W - t“;)n -
At =0 P8 At >0 B =0
%4 ii \ " 1
®
N\ ZZ/' T / #
I
Fundamention f
(frozen t 'fclorles) BEP \
tI!I * l} (31] ! 0 L} 3}
At 50 B >1 - B <l
Il O
i 1 o
) | ()
Fundamenton
(revived trajectories)
3 rd subspace 2 nd subspace

Fig. 2.1. Spatial metamcrphosis of structures of a barc elementary particle.

All these princisles cxcluding the Darvin triad were used under the development of the
unified theory of fundamental field. The Darvin triad was included into the enumerated condi-
tions under the influence of works by N. N. Moiscev.



In our opinion, the proposed paradigm can be considered as a certain step in the direction of
the development of works of V. I. Vernadsky, N. N. Moiseev, I. R. Prigogine oriented on the con-
struction of the theory of noosphere.

It is easy to see that offered to the reader’s attention PVDS corresponds to the ideas of N,
Wiener who considered cybernetics substantially broader than the idea which is now putinio the
concept “systemotechnics”.

Yet, further discussion of PVDS and especially of the mathematical apparatus needed for its
use, is impossible until the fundamenials of these branches of modern mathematics, which are far
from being generally known, are given.



Whis could guess thal we would know
so much and understand so litte.

A. Cinstein.

Many modern scientific inventings are
written in a semimystical language as
if specially to make the r r have
a painful sensation of a certain super-
man prasence.

K. Lanczos,

3 ON THE USE
OF HEURISTIC
POSSIBILITIES OF MODERN MATHEMATICS.
PECULIARITIES OF MATHEMATICAL APPARATUS OF THE THEORY

3.1
The statement of the problem

The program claimed in sections | and 2 cannot be solved without an active use of not only the
technical but also the heuristic possibilities of modern mathematics.

The development of modern mathematics resulted in the appearance of a great number of new
objects and new laws and rules connected with them. They can not be considered as the resuit of
the extrapoiation by stages of direct abstractions of these or those known natural objects and
rhenomena.

Almost for all the discussed infernal, purely mathematical objects, it was not managed yet to
find such stages of abstractions which would be finisned by a sharply recogmzed object of nature,
by abstracting certain or all properties of which we couid receive this mathematical object. To use
the heuristic poscibilities of mathematics it is necessary to learn to follow this way from the
abstract to the real things.

32,
Formulation of the problem

The probiem resides in the nccessity 1o develop a rather general theory of mapping of internal
mathematical objects (let us call in such a way abstract mathematical objects created within the
bounds of laws of mathematics itself) onto the objects of Nature. The first steps in this direction
are made in TFF. We mean not to return to the mystical ideas of the beginning of our century of
“the beyond” (with other dimensions) which influences our world. We mean that the space with
otherdimensions is not “the beyond” butour real space. though it is not sure to be identical to the
habitual Euclidian space, or even io pseudo-Riemannian or pseudo-Euciidian which became
habitual too.
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Up to now the use of the internal mathematical notions {or discovering natural objects cor-
responding to them, in fact, in most cases was of spontaneous character of mere guess-work or it
dawned upona person Inouropinion, itis quite the time toregulate this process. Principles of this
regulation, as it would be seen from below, are laid down intc the fundamentals of the Paradigm
for Viable and Developing Systems on the base of which TFF was constructed.

3.3.
The mathematical basis of the description of the
spatial metamorphosis phenomenon

The term “metamorphesis” is widely used in modern biology. It means a radical change of the
structure and properties of an organism cver time, for example, a caterpillar becomes a chrysalis
and afterwards a butterfly. For some types of living organisms this metamorphosis over time
(time metamorphosis) is 2n important condition of viability and development. Yet, this condition
is not necessary for all living organisms. The greater part of living organisms is not subjected to
time metamorphosis. Spatial metamorphosis required by PV DS has to be realized in all viable and
developing systems including of course all structural elements of matter (see section 2).

Forany fiber bundles thie existence of at least one type of SM follows from their definition [11,
8 |. Indeed, any geometrical construction existing in a fiber is realized in the base only as a point,

that very point which is common for the fiber and base. In systems satisfying PVDS the type of SM
in each case is det=rmined by the composition and construction of fiber bundles in which the sys-

tem is realized and by the features of mapping between all subspaces. 9

Now, in fact, there is no unified discussion of the general theory of mappirg in literature. Itis
discussed as important fragments in very different branches of modern mathematics, upon which
we rest in this section.

Inmodern mathematics there are substantial developments of many problems of the theory of
mapping. They can be not only a guide in solving concrete technical problems but, what is espe-
cially important, they are of great heurisiic significance.

In this subsection we enumerate the principal information on modern theory of mappings
which is used in some or other way in the forthcoming calculations. T'osave the volume of the book
we restrict only to the information we call the definition-résumé (DR). All DRs enumerated below
havea referznce number. References are given to the papers where the reader can find the discus-
sionin detail and the proof of these results by modern mathematics. Thatis a part of all things laid
down into the basis of the description of mapping in the theory and the description of the SM
phenomenon, in particular.

.;KSI'Elﬂdbtlulr,llp.'t -loull{.u::allll]th:e!:nenunl’ﬂh:r bllﬂﬂlﬂl(ﬂhallllldt‘ltcltb,‘lllblﬂ.f.tlB'l{ﬂ"llnl!hclnl-
Ingepace. Avcording to this, in the fiber bundle the concept of subipace lithe aynonym of the Hbei of (he base.
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The first group of DRs describing spaces
and their eiements in the theory

DR 1. Topological space X is called the Hausdorff space if the following Hausdorff axiom
isvalid in it: any twodifferent points of this space x, ¥y € X have disjoint neighbourhoods [11,
Vol.5, p.7771]

o,No,=a.
According to the definition, a neighbourhood of any point is an open set.
Note. Below certain additional conditions will he impesed upon the neighbourhood.

DR 2.1fin thespace X there 1sa signed point x, € Xthensuch spaces (X, x,) have substantial
singularities and are called the dotted spaces [93, p.13].

DR 3. If the neighbourhood O of some point of the topological space has the boundary 30,
then the neighbourhood with the boundary forms a closed set.

The subspace consisting of points which have maximal neighbourhoods C, with the boundary
80, is not the Hausdorff on=.

DR 4. A topological space is called compact if any of its open coverings contains a finite sub-
covering.

This means that if {U} ;- sis an open covering of the space X then the finiie set
{s,, ...5;) € Sexists, suchsetthat X = U, UU, WU, U...U U, ,where U, is theelement of
1 2 3 k |

covering of {U,}, that is an open set; U is the theoretical-set union [91, p. 196].

DR 5. The Cartesian product of the topological spaces X and Y is the space X x Y whose ele-
ments are the ordered pairs (x, y), where x € X, y € ¥. The topology on the Cartesian product
is called the Tikhonov topelogy |9, p. 127 ]. Itis originated by the family of projections

pollX, - X .
S$ES
DR 6. The bunch of two dotted spaces (X, x,) and (Z, z,) is the space

(Z x {xHhu({z}x X).
In detail it is givenin [91, pp. 19, 127 Jand [93, p. 14].

38



The second DRs grou
describing the mappings tllemsehfas and the humotoples

DR 7. The most impcrtant properties of continuous mappings, compact sets, connected seis
represent the principal subject of general 1opology. The problem of existence or non-existence cf
the continuous mappings f : X — Y between two topological spaces X and ¥, by methods of map-
ping topology in algebra, represents the subject of algebraic topology.

CR 8. Toformalize the natural intuitive concept of relations of different ty/pes of manpirgs be-
tweea two topolegical spaces the notion of homotcpy is introduced. The homotiopy Fof the space
X into the space Yis the continuous mapping of the Cartesian product X x [ into Y3
F:X x I-» Y,where X, Y are the topological spaces; / = [0, 1] C R'is the unit cut.

For each the homotopy F,determines the continuous mapping F, : X — Y, given by the foi-
lowing formula:

Fi(x) = Fix,t); tELxEX.

DR 9. Mappings f : X — Yaredivided into a setof disjeini homotopical classes | X, ¥ ]which
have 2 number of regularities distinguishing them from the class of topological spaces of a generai
type. The principal feature is the presence of a group structure in many caszs (see CR 15).

DR 10. The universal property of the mappings onto the Cartesian product consists of the fol-
lowing:

ifp,: X x Y=+ Xandp, : X x Y-+ Yare the projections of the Cartesian product X > ¥

on the firsi and second factors, respectively, then for any pair of mappings from some space Zcnto
X and Y, respectively, f: Z-+ X ; g: Z— Y, such unigue mapping h: Z — X x Y exists that
p,°h=/jand By h = g, whereeis the symbol of composition of mappings.

DR 11. The topology of quotient space. Let A be a closed subset of the space X.

We consider the transition to the quotient space X/ A resulting from the reducing of the subset
Atoa point. We consider the relation:

a=(Ax AU{{x,x), xEX}C X x X
and suppose: X /A = X/a.

Thus, the quotient space of the space X on the subset A ic defined as the quotient space of the
space X on the relation o [93.p. 11 ).

DR 12. The principal property of a bunch of spaces (X, x, ) v (Z, z, ) is: for any continuous
mappingsf: (Z, ‘u:' — (W, “'b} i B (X, xp) = (W, wy) such mapping ¢xis's ana is unique:
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hr{Z v X, s )= (W, “’o] , where » is the common point of the bunch. thath iZ = f;
h1X = g.This mapping h1s denoted by (f, g ).

N o tu. Described in DR 12 property is the analogne of DR 10 property but only for the converse direc-
tion of the mappings fand g. Such properties are called dual

DR 13. The standard mapping of the sphere onto the bunch of two spheres
48" 8% v §iresults in the fact that the equator S~ ! entirely turns into the common point

S, of the bunch St v §! Such mapping in all points except the equator is: a) one-to-one cor-
respondence; b) of the same orientation.

Algebralc structures in the general theory of mappings

DK 1 4. If for a given topolagical space a certain algebraic object F(X) (group, hoop, madule)
is chosen for the analysis ther: the conditicn of the mapping f : X — Yis the requirement of the
cxistence of the homomorphism

Ff): F(X)— F(Y).
DR 15. For dotted spaces, homotopical groups i, (V. y,} = [(S™, 5,); (¥, y,) 1are defined.
A group opeiatior is intrcdvced in I, (Y, ) in the following way [11, vol. 1, pp.1062—

1063]: ifn=22 x=1[u)l, y=1[v], then x.y= [W], where the mapping
Wi(I", 1T 70T —e (X, A, x;) is defined as

u{2 . t,,...1),if0<, < 12,
Wi, t) =
v(@y—-1,4,..0),ifVzs< 1.

DR 16. If n=1 then I1, is cailed the fundamental group.

DR 17. If n=0 then I1,{M,x,} is the set of components of the linear connectivity of the space
M and has no group structure in a general case, but in several impotrant particular cases
T1,“M,x,) is the gronp, This is the case when M itself has a group structure. In the case when M is
the Lie groupand x,=1, IT,(M, <) = M/ M, is the quotient group of 1 group.

The same holds with the loop space Q (x,,N ).

Note. The loop space Q (xy, N ) Is the space tke elements of which are closed paths going through the
signed point xg of the space N.

DR 18. Elements of komotopical groups are the classes of the disk D! — (M ", X, ) mappings

inwhich the beurdary 30! = §/™!turnsinto thesigned point x, € M under all homotopies (and
consequently, under the mappings (see DR 8)).
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Another way of the definition of the element from IT,(M, x,) is io represent it as the homotopi-

cal class of the mappingsof the dotted sphere S/ -» M when thesigned point of tha sphere solures
into x, {aisc under all homotopies). The mentioned above group elements are the compenenis of
the connectivity of the space of the mappings S; — M under which s, — x; .

Differential-gecmetrical constructions

in the general theory of mappings

DR 19. The fiber bundle is the quaternion (B, P, E, F ), where Fis the enclosing (total) spare;
B is the base; Fis the fiber; P : £ — B8 is the projection.

The following requirement should also be satisfied: there is an open coveriag of the base
(U, (eNzea-ie

u_=18,
=%

diam U, = e,
and the homeomorphisms @, : U, x F— g {U,) , which resultsin P D = PU: U, %

X F-+ U, .Thisrequirementiscalled  local triviality condition. [tis importantina number of
physical applications.

DR 20. The fibration (B, P, E, F) is called principal if its fiber Fis isomerphic to the structura!
group.

We consider the simplest examples of the principal fibrations:
DRP? =s0@)£82; F=30@) =S$';
2) The Hopf bundle
P =5su2-Lst; F=s,
3) The general Hopf bundle
S‘zit+l£€ pn. F=§

DR 21. Those bundles are called trivial which are isomorphic to the direci product
E = B x F,where Eis the enclosing space; B is the base; Fis the fiber.

In particular, the unitary group may be represented as a trivial bundle:
U(m)=S8'"xSU(n).

DR 22. A particular case of the bundle is the covering X' = X .
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In this rase the fiber Fis discrete and coincides with the fundamental group.

DR 23. A vector field is the section of tbe tangent bundle J upon the manifold M. A single closed
orientable two-dimensional surface, allowing a non-degenerated in any point vecter field, is the
torus T 2 [104, p.615].

DR 24. The non-degenerated singular points of the vector field on the plane may be only as
the following:

center [\, € Im, X € Ini) ;

node (v, 0 ER AN, 20);

focus (\ =2y)

saddle (z; , A, E R, Aehy < 0).

where ) , A, are roots of the characteristic equation.

DR 25. If the neighbourhood of eack point of the space has the following properties: the max-
imality (sce DR 3); 3010 is the boundary between real and imaginary domains; the point x, itself

belonigs to the realand imaginary domains, then the construction nas a structure of a fiber bundle.
I*s base is the neighbourhood O, ;itsfiberis X \ (O L 60, ) ; numeral values of the elements of
the base and the fiber (i. c. the intervals in the spaces O, = Band F) differ by the factor i. It means

tnat if the base is considered to be real then the fiber is imaginary. Therefore, the concepts of a
real space and an imaginary one are relative here.

Classificational spaces
in the gereral theory of mappings

DR 26 Classes of the isomorphic vector fiber bundles over the cellular space X with the struc-
tural group G ) have corresponding homotopical classes of mapping
fiX— B-G(n),where § -G (n) is the classifying space.

DR 27, Different fiber bundles have the corresponding different homotopical classes: the Chern
ciasses correspona to U{n ); the Pontriagyn ones correspond to § p(n ); the Stieffel-Whithey ones cor-
respond to O(n ).

For the Hopf fiber bundle the Chern class is defined as

k
chiy) =’ = T4y
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DR 28. Ji M is tke compact one-connective symmetrical space with sectional curvature,
everywhere being not greater than a, then the volume of any non-trivial k-dimensional cycle is not less
than that of the k-dimensionai standard sphere with the curvature o [102].

DR 29. In k(x ) group the cperation of the tensor product of fiber bundles induces a ring struc-
ture.

The Definitions-Résume given here are certainly far from exhausting the basic information
taken from modern mathematics when working out PVDS and TFF. But they give an idea of this
information and in many cases they allow better understanding of the initial premises in the cal-
culations below. In the last case if the use of the corresponding DR is not evident the reference to
itis given.
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CONSTRUCTION OF THE DIAGRAM
CHARACTERIZING
ALL SPACES DESCRIBING THE MATTER IN TFF*)

The main principle. in accordance with which the construction is made, is the following: frem
the inside to the outside or otherwise, from the elements to the subspaces and further on to the
enclosing spaces. According to this principle, elements of the diagram (see Fig. 1.2) are picked up
and laws of mappings between them are determined. The leading principle, which makes the laws
of mapping concrete, is satisfying all the requirements of commutativity of the diagram arrows.
The accurate formulation of the commutativity condition is the following: if there are three ar-
bitrary taken elements of the diagram connected in the following way:

thep the mapping f has always to be equal to the composition of the mappings g and
h:f=g°h.

4.1.
The firct chain of commutativity at the level of 0SS, VSS and 355

We now begin from the mapping F|. It represents the mapping of § 3 onto the spatial part of
Torw-.‘JThe topology of the spatial part of Tory, reprcsents the Cartesian product of two

'}l.l.‘!.-pm intook partin writing thizsection

) The description of the fundamenton geometry (Toryy) is considered in section 14
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circumferences S ' x § !, Therefore, it is homeomorphic but not isometric to the Enclidian torus
Torg. In fact, Tory, allows embedding ioto R* but

Torg = {x, 5 2,2, 1x? + y? = a2z + ;f =bYC R = P, “.1)

Yet, it is impossible to consider Tor as a subset of the Euclidian space R. Therefore , the
mapping F, : §° -+ Tory,is constructed in the following way. In § % a subset is picked up which is
homeomorphic to Torg and afterwards it is mapped by coordinates onto Tor, . We give the com-
putation corresponding to the F, construction.

53 is the subset of R* given by the equation
2+ P+ 2+ =R,

¥

where x, y, z, z, are the Cartesian coordinates in R4, R, = coast (length dimension) is the radius

of 5%, These coordinates are connected with angular coordinates on S ? in the following way:

[x = R, cosX cos cosg ,
¥ = R, cosX cos sing ,
z = R, cosX sin@ ,

z, = R, sinX ,

4.2)

where X, 8, ¢ are the standard angular spherical coordinates (see table 4.1).

§ ¥ is stereographically projected on R? so that X turns into the radial coordinate rin 82, r=r (X},
while ¢ and 8 become conventional polar angular coordinates in R® . Therefore, if in R* we pass to
the Cartesian coordinates x', ¥, z' (which have primes in conirast to analogous coordinates in R*),
then there is a usual relation:

x' = r(X) cosf cose ,
y' = r(X) cosd sing, “.3
z' =r(X)sing.

It remains to calculate the dependence r (X ). We make an auxiliary construction



S

N A

~

where O is the pole of the stereographic projection; 1/ is the tangent point of § * and RY; Aisanar-
bitrary pointin R* AN = r (X ); ON = 2R, is the diameter of S *.

We now consider the triangle NOA. It is rectanguiar, and therefore
% = tgﬁo‘x-'—z(él = 1g'ﬁak-r(x) = 2R tg NOA .
Ll

Yet, the anxlcﬁa}\ is an inscribed one and it is equal to 2 haif of the arc tightening it The length
of this arc is equal to X, then @ = %/ 2;in this case
r{x) = 2R %, “.4

and then F\( X, 8, ¢) = {x', ¥, Z') , where

[ ot .

x' = 2R, lg%ousacoscp.

¥ = 2R, tg*;L cos sing ; 4.5
z = 2R, g4 sind .

The formvlae (4.5) map §* onto R*, and Tor g is the subset of R%; therefore, (4.5) covers
Tory, as well. It covers Tory, in the sense  that there is the theoretical-set inclusion Torg C §°

which is given by formula (4.1). Itsfunctional type is given by formula (4.5). So we havz found ihe
unknown mapping £,.

We now pass to G,. This is the embedding of the bunch of spheres § ! with different time
scales into §7. It is the result of fixation of any two of the three spherical coordinates of S 2,
This embedding is determined nnambiguously since the remaining coordinate has to be within
the domain (0, 2+«) and it may be only the coordinate ¢, because there is no time on § 3, the time
coordinate “is pressed” into zero point, therefore

G, (1% 18,17 = (X,, 8, ©,0,0,0) . (4.6)
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‘t remains to examine F,. The commutativity condition fixes it strictly:
F, (g, 1%, 1P, 1) = F, (G, (¢, 1% 1P, (1)) = F, (X1 85, 4. 0,0,0) = (x', ¥, 2) “."n
wherex ', y', 7 ' are determined from formula (4.5). Finally, we have
F(. %Pt = (x,y.2); (4.8)
. X
x' = 2R 1g -251 cost, cosg ;
y' = 2R, Igj—uzQ 0s8, sing ; 4.9)
lz "= 1R, tg%‘lsineo ;
wherv.:)l:ﬂ = corst, A, = const .
‘We now determine 8, from the condition of mapping 5'onto the diameter. This means that
z=0, consequently, 6,=0 ...

We determine X, from the condition when the torus radius is either 1aternal or external, i.e. it
isequal toa = b . This follows from

= 2arctg —- - 4.10)

Here R = R ; Ris the radius of § '; a, b arc the parameters of Tory, which have length dimension.
And so

8, =0: X, = 2arctg 452 (.11

Consequenmily, F, {g) = (x', ¥, 0) , where
xX =2R lg? 08y ;

y = ERtgx—lusimp;

=0,

"} Wecannot take rg=0becosuse inthlscasethewhele mapping F; would degenernie into one-point mapping.
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42,
The chain of embeddings G; and Gs and the mapping 5
Here the commutativity condition must be satisfied
G, = F,°G,. 4.12)

At fivst we examine G,. The image of the mapping F, is characterized by the fact that the coordi-
nate z' is equal to zero. Therefore, we map the remaining coordinates x', ¥ onto € ES2:

G, (x YY) = (%) 4.13)

x=x',
y=y.
In this case two time scales corresponding to different values of the constant Xin the formula (4.9)

turn into 1% and (# in ES2. This transition is determined as follows: since @ = b , then
Xgq ® Xggand thetime scales (% and t# are different:

X, = 2arctg 2 =z i
M .z+ b ,ﬁ 4.14)
Xgg = 2 arctg 5=+ (.
Thus,
G, (x,¥)=(x,¥) =id. (4.15
We now examine G, :

G,: S*P\ {0} » R¥%F
here S ! is standardly turned into the Cartesian coordinates in R* ; z* must be equal to zero because
in € 385z = 0. Therefore,

X = Rcosg,
[y = Rsing. (4.16)

There are two time coordinatesin € ES2 andonein € 2SS, therefore ¢ 1% ; ¢t# s (# _ This
demands the coincidence of angular velocities, that is mi” has 10 be equal to m,” i.e.

@ _ @ R(G) 2) ZXR{:J ZXR?J

- - v at @.1mn
5 B

and thisis what gives the above-mentioned relation of the equality of angular velocities.

Thus, the mapping G, exists only if the relation w{® = w{” is valid.
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So:
G, (¢} = (x,3) = (R cosg, R sing} ,

wherex = R cosyg; y = R sing; R = constistheradiusof § ' x,y arethecoordinatesin € ES2,
which have the dimension of length.

We now construct F, using the commutativity condition. It can be constructed by introducing
the calculation space (3 — 2). which can be interpreted as the space of scales change. As a matter
offact, the radiiof theinternal and external circumferences are different (they are equal to (a - 5)
and (a + b). respectively) but § ' has the only radius.

Therefore, it is possible 1o introduce the false space 87+ “# 11 should have different
length scales but a common time scale. These scales are calculated in such a way:
r,=A,r;
!r(r _ At.r {418}
-
where 7 is the radial coordinatein € 3SS; r_ is the radial coordinate in R®**) % rgis the radial

coordinate in R P, The coefficients A, and Agare calculated so:
R=A(a-b); R=A4Agla+b).

It means that

- _R_. -
a Ag =

a  a=-b"

promyis 4.19

The radii of both circumferences in the compenents o and p are the same and equal to R. Now
the formulae (4.16) can be used because R is determined unambiguously.
So, F, in polar coordinates has the form:
€ 335
(Ag. 7 p)
(r.v)
(Ag. 7. 9) -
In the analogous way the mapping F,: € 355 — € 1S5 is constructed. In the same polar
coordinates it has the form:
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43.
The mappings Fs, F; and the embedding G,

G, has been already calculated in subsection 4.2, The mapping F, demands for its existence
the same conditions as G, because of the same reason: in € 288 there is the only time coordinate
andin € VSS there are iwo. The mapping F is

L

4.2
lfﬂ*" @ = (B (4.200
to satisfy the chain commutativity condition, namely
Fg=G,°F,. (4.21)
Thus,
Fo=id|gh,i.e.Fely) = v, (4.22)

where ¢ is the angular coordinateon § '

F,should be F, (p) = p. Yet,in € ES2 thereare the Cartesian coordinates, and therefore

Fy(x, » 2) = arccos —=2—=. (4.23)
2] VZi7

Consequently, the commutativity (4.21) is valid because

F, (Gy () = Fy (R cosp, Rsing, 0) =

= ams_._____ifl’.!ﬂ___, = Arccos (CDS?) =p. (‘.24)

\'?ws p+}§sin!p

4.4,
The chains of mappings Fi, fs and the embedding G
In the spatial part G is equal to G, and the time relations are s B =y,

In the same way the spatial parts of F, and F, do coincide. Finally we obtain:
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G, (es )< (x,y, 218, 07)
@ = Arceos ——=—;
F,: V242
NS
Fox,3,2) = (o, 7).
We now check whether the commutativity condition is valid:

F‘ = G,"F‘;

R
Fd(Gl("]]=am[¢W?:’%)=?r )

i.e. the same as in the formula (4.24), consequently Fy=p (seethe formula (4.22)).

4.5.

The chain of embeddings G, and G,; and the mapping Fs
Here the commutativity condition must be satisfied:

Gy = Fy= Gy,

which has the topological structure {1}.

(4.25)

(4.26)

4.27)

(4.28)

Yet, for the commutativity {4.28) we should “not forget” that this one-clement setis the
circumference, considered not as a subset but as an element. This can be done by constructing in
a special way the space (2 — 1) which is a false space, merely a calculation space, through which

F' acts.

The space (2 — 1) is the two-dimensional Euclidian space on which the equivalence relation

(x, ¥} ~ (x', ¥ )is given only in the case when
2oy =yt gyt

where (x, y) and (x’, y' ) are two equivalent points on R,

(4.29)

The mapping Fyacts in the following way. The circumference € 255 is mapped onto R%in the

usual way:
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[xn R cosgp ,

R o (4.30)

and after that (2 -+ 1) is considered as the quotient space (see DR 1) 8%/ ~, The equivalence
classes (4.29) of the quotient space are the circumferences x* + 3 = const. From these elements Fy
picks up one element {1} which corresponds to tlie circumference x° + y? = R?and maps it ontd
1SS. The word “picks up” has the following mathematical mearing: the image of mapping F, is
tie circumterence §' of the given radius R =const:

ImF, = S (R).
Weobtain {1} € 15S.
Therefore, G,y ({1} is $* with the same radius R, and the commutativity (4.28) is satisfied.

From the resulis of subsections 4.2—4.5 it follows that all circumferences in € 358, € ES2,
€ 288, & ES3, € 158 turn into circumferencs. Consequently, their centers turn into the
centers (since there were noinversions among the mappings discussed). Yet, on theone hand, the
zero point of ihe coordinate frame is their center, on the other hand, the signed point {0} is their

center. It means thatall these elements belonging to BEP have the coramon zero point which is the
signed point {0}.

4.6.
The embeddings of elements
We now examine the embeddings G, G,,, G,,. G, and the mapping £, onto the element.

Since these embeddings are those of the elements, they represent the restriciions of theiden-
tical taapping id onto the element in question, therefore,

Gy: Sh0Ps §HAPY 1 G (p, 1%, 1F) = (g, %, 1F); 430
Gy : Tory| _ R** P\ {o}m G, (x, 3,19, 1P ) = (x, 3, 1), (4.32)
and consequently, G, = id (R*%) and t on the rignt hand side of (4.32) can mean (% or # in
respect of what coordinate frame is used in 3SS (rectanguiar or oblique-angular). The space-time

(ST) in 35S remains the same and different frames of ST coordinates single out diffcrent time
axes init.

In the mappings G,, and G,; no problem of this kind exists and both the former and the latter
have one time axis only:

Gy : S"P\ {0} = R*P\ {«}= G, (¢) = (R cos, R sing) , (4.33)
where R = const is the radius of §',
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Gis: (1} RIT\ {me)= G,y ({1)) = Gy(8'} = (0,0,0) (4.34)
The mapping F,has the one-element set {1 }asanimage, therefore, forany ¢ € 5! we have:

Fy(g)=1. (4.35)

4.7.
Construction of ES2

Here iwo commuiativiiy conditions are used simultaneously:
Gy e Gy = Gy* G,y 4.36)
G326 = Gy Gy, - 4.37)
ES2 is eacloging for 355 and 255 and therefere, it has the following structure:
ES2 = (£ R*“H\(wa}) x (L RZP\(as)) =

(4.38)
= (3 R*4Bx 3 REE \ (e} =3 (B2 BO O P\{er} =3 R4 *P\[we}.

We denote the coordinates corresponding to 335 by index (3), and those corresponding to 255
by index (2). Thep the embeddings G, and G ; take the form:

Gz, p) = x@,9%,0,0); 4.39)
Gy, (xy) = (6,0, x®, y@), (4.40)

Itremains to obtain Gy, from the conditions (4.36} -— (4.37) because the remaining part of the
embeddings has been already calculated. We make it in the fellowing way: G gives the Cartesian
coordinates in & ES2: x=rcos ¢, v = R sin ¢ . They have been already agreed with ES2, and the-
refore:

Gyl y) = (0.0,x, y®) whent = ¢f; “aD
G, (e y) = (x™, y®,0,0) whent = (*. ’

48,
Construction of ES3

Ir: the most part this construction is analogous to the one performed in subsection 4.7.
Two commutativity conditions are

GGy = GoGy, (4.42)
G2 Gy = Gy Gy 443
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ES3is enclosing for 25S and !S5 and therzfore, it has the following structure:
ES3 = (ER*F\ {«}) x BRI\ {=]) =
= (TR x TR\ (e} = 3 (R?x R)PT\ {0} = (4.44)

= TRMT\ ().
We denote the coordinates corresponding to 288 by index (2) and those corresponding to 188
by index (1). Then the embeddings G, and G, take the form:

Gy (5 3) = 5@, ¥9,0,0,0); 445
Gy (x, 3. 2) = (0,0, x, y, 21, (4.46)

It remains to obtain G, from the conditions (4.42) — (4.43) because the remaining partof the
embeddings has been already calculated. We make it in the following way:

G, gives

x=Rcosp .\ e ESIth he Cartesi dinates alread ith ES3

y = Rsing =in € there are the Cartesian coordinates already agreed with ,and
therefore:

G (x»z)=(0,0xDy0,2z1),

G, (tf) =18, 4.47)
G,t")=1".

Note: In this place there Is some difference from that given in (4.7) because here the times with Indices
Bandy are agreed.

49,
Construction of ES1 and the chain of mappings

G,
YSsS ESl
G, G,
loss |
1 08s )

ES1is enclosing for 35S, 0SS and VSS, therefore:
ESl = (S R**P\{x]) x §* x (z s+2B7), (4.48)
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Yet, itis necessary to take into account that VSS is embedded by its spatial part into 0S5 (this
is G,) and therefore, in the product (4.48)

B x @Eshabry = ghaby, (4.49)
And then:
ESI = (S R*“F\{es])) x § 3% Y = 5 (REx §%)4P Y \(w}). (4.50)

In ES1 it is most convenient to use the mixed Cartesian and pelar coordinates, i.e. in ES1 (x,
¥ %, 8, ), taking the values:

—@m s x,y=s 4o,

0=<y,0<smw, 4.5
[0<¢<2n.

Then the embedding G takes the form:
GS (N,y} = [x‘y! 0l 010]; (452;‘
and
GZ:G'Z (X' B"P) = [0,0. :(»Ev‘i’}' (4.53)

In this casc G; can be calculated as the following composition to satisfy the commutativity
condition

Gy =G,*G,. (4.54)
G, was calculated in subsection 4.1, by the formula (4.6). Then

Gj (‘PI !a‘ fﬂ\ Iy] = G‘z (G.q. ('Pt fﬂ! Iﬂ} !?” =

= 62 {X{]l eov P 0,0,0} = (O'O’XG' BUP‘F}‘
Thus,

Ga. (‘P'! tav Iﬂv"-‘y) o tuvor Xor Bu.tp) v

1%t
i (4.55)

Iﬂl-* 1‘8 %

1Y+ 17 (see formula (4.11)),

i.e.

Gy (o t“ 1P 1) = (0,0, x0, 86, 90 1%, 1P, 17)
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4.10.
Construction of ESM and the corresponding embeddings

ESM is enclosing for ES1, ES2 and ES3:
ESM = [E(R?x §%)%P7 \[e}] x [Z R*“F\{es}] x
X [ERVPT\(er)] = (R x $)P7 x (2 R4“F) x 50
X (Z RSB Y\ (e} .

Yet, 388 = R* .8 is embedded into ES1 as well as into ES2, therefore, it is 2 common factor,
In an analogous way 258 =R># is embedded into ES2 and ES3. As a result of this, the second fac-
tor turned out to enter by parts into the first and the third ones and therefore:

ESM = 3(R?yx §%)A7 x T R \[w) =
(4.5T)
=3(R? x §% x R® }ﬂ-ﬂ-r\{._,} .

In ESM there are the following coordinates (it is suitable to index them by the numbers of cor-
responding 5S):

(xm' _,’,{3)1 x(n)_ B{m‘ ¢:o;| _tm' ym‘ x‘“, y(n‘ zw,) = (4.58)
It remains to describe the proper embeddings:

G, (% 3 X, 6, 9) = (¥, ¥, X, 6, ¢, 0,0,0,0,0); (4.59)
Gy (X%, ¥, X2, ) = (¢, ¥, 0,0, 0, %, ¥, 0,0, 0) ; (4.60)
G, (£, ¥, £V, 0, £ = (0,0, 0,0, 0, 2, ¥, XD, D ), (4.61)

Information on all mappings discussed in section 4 is reduced to tables 4.1 and 4.2.
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Table 4.2

ppings

Nos (EI:;eddm o Specific coorditate expression
Fy 0S8 + € 358 Flaber=(x.¥.2) r’-lﬂugmﬁmp
y=2Rugdconfuing
:’-Mls%:!nﬂ;n-ml
Fy VSS = £ 358 Fylp)=(x'.¥.z") x._mls%ompm_mm
y'alﬂt;x?odnp;x‘,=Zan:lsg-;'—o-mnsl
=0
F3 € ES52 - VY53 Fg(«\" yz)=a x
Viley?
Fy | €ES3=EVSS x 8 8
Fy(x, ¥, 1) = arccos s P Yy
i
Fs VS5 - € IS8 Fslyp) = 1is the one-point mapping
Fg € 235 - £ V35§ Fg=id, e Fglp)=¢
F- 3-=2 T
7 ( ) Ha T
€358 - €288 T N g, =t - . S,
Fq(vup) Sl ¥l =73 c:m-lm.ll.:'8 2+3 = const
Fy €285+ € 15§ Fg(S" ) = {1} — formal record deciphering in fext
F, 3-1 deci ing in text
¥ | eas® iV eigs | Sb
Gy | ES1=B5M Gy (% yx bop) = (@3, Y3, 0,60 o g0, 0,0,0)
Gy 0SS - ESI Gp(x:0.9)=0(0.0,%.0,p)
Gy | vss~EsI Gy (p. 1% tP.t7) = (0,0.29.00. p )it Pe7 w p .oy
%o = const, 8 = const
G4 Y85+ 0SS 04(,».:“.:5.:?)-(m.ao.w.o.u.oym-mn.ao-:om:




Tabie 4.2 conilnuation

Nos (er;pm% Specific  coordinste  expression
Gg € V5SS - VSS Gs"‘ﬂ'Egl"caiw'f“-f"}*(s’-'“-"]
Gy € 385 -~ €ES2 Gy(x'.y)=(xyix=x'y=y
Gy €255 - €EES2 Gylp)=(x¥)ix=Rcosp,y=Rsing
Gy | €288~-€ES3 Gy(e) = (x.y.2)ix=Reosp,y=Rslng.z= 0" 4,07
Gy € IS5 -~ EES3 Gptip~ Slﬂn:ompleterecord‘lnitc-r‘duclion of S5(2 = I)is nec-
essury) y
@y € 358 - €388 Gy (x.3.0°, t#y)=(xx1)
G, | EES2-+ES2 G 0.0.4%, ¥ ywhen t+ 7
(.53, 0,0 ywhen tre t*
Gy3 € 288 = 258 Gy (¢ ) =(Rcosp,Rsinp );R = const
Gy | €ES3~ES3 Gy (nyz) = (0,0, 0, A0y, G, (18,27 ) = (19,27
Gys | €1S5-1S8 Gy (1) = (0,0,0)
Gy | 3ss-+ES2 Gy (xy) = (33,3, 0,0)
Gy | 285-Es2 Gy (x,3) = (0,0, 53, 3y
Gy | 285 -~ES3 Gy () = (£, ¥, 0,0,0)
Gy | ISS=ES3 Gyg (xyu2) = (0,0,x49, 10, 1)
Gy | ESZ-ESM Gao (A¥. ¥, 42 @y = (63, ,0,0,0, 52, ¥2,0,0,0)
Gy, ES3 = ESM Gy (xm.ym,x‘“.f“.:"’)- (0.0,0,0,0, 12, 21 50 b Dy
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5 TRANSITICN
FROM THE SPACE-TiME
TO STRUCTURALELEMENTS
OF MATERIAL FORMS (TO THE MATTER)

5.1.
General formulation of the problem and the principal ideas

Nowadays we know a lot of structural forms in which matter reveals: the entire Universe, star-
clusters, stars, plancts, molecules, atoms, crystalls, elementary particles including photons, all
of them are the known structural elemenis of matter. To clear up the nature of these structural forms
and interactions between them just a unified theory of field is required. In numerous theories of
the ficld which are being developed now a great number of still not observed structural elements
of maiter are postulated: quarks, partons, gluons, creons, supersymmetrical doubles of elemen-
tary particles and many others.

In TFF such a volitional postulation of still unknown elements of matieris forbidden: they ha-
ve to appear as a result of mapping absiract internal mathematical objects onto the concrete geo-
meitrical constructions which are liable if not 1o immediate observation then at least to description
in interaction with each cther. PVDS and the results of section 4 give enough reasons for transi-
tion to the structural elements of matter.

During centuries in the existing system of knowledge we mainly just guessed the essence of the struc-
tures created by Nature or simply took them from the experience, The theory developed here al-
lows to doiton the basis of rather peculiar but subsequent and understandable mathematical
approaches and to obtain everything “step-by-step” in the forms of unambiguous solutions found
by nature for the immense time of its evolutional development. We begin with the description of
the mathematical construction of the principal “bricks” of matter. Part of this description rests
upon the problems already discussed in the previous sections, partof itis an abstract of things
which would be proved below but itis necessary for understanding the material discussed. So, we
describe the principal mathematical constructions which Nature has used to construct all funda-
mental forms of matter.

The schene of these mathematical constructions based on PVDS and laid down into TFF
(see Figs 1.1 and 1.2) is the following. The Universe is the three-dimensional sphere §°. Any
point inside this sphere, as it is known, is its center. (Transition from §? to the spatial part of
the Einstein Universe with pseudo-Riemannian geometry will be given below). The most
natural object originated as the mapping of S onto any of these centers turns out to be the
terus. Consequently, the first “elementary” structures in such Universe have to be tori. The solr -
tion of the corresponding Plateon problem [105 ] with taking into accout the requircments
of the Triunity Law (sze subsection 5.4) shows that these tori are of finite dimensions.
Consequently, theirnumbarin the Universe with finite dimensions and their concentrationin
all finite parts of the Universe are also finite. In TFF these elementary essences of matter are



called “fundamenions”. The whole world of matter and all its structurai manifestations are the
mappings of different states of the fundamenton. (Consequently, the most elementary essence of
matter is the only particle, i.e. the fundamenton.

The calculation shows that under mapping ihe fundamenicn properties from the fiber 5° onto
the base (which is the “laboratory™ subspace) the fundamenton should be considered as the “Plank
particle” [14]. The enclosing spacc in the given fiber bundlz (see DR 19) is complex. In the
real subspace (the tardion basc) only those properties of the fibers ars observed (by meansof the
preper mappings) which are possibie to be observed in this base. Besides, in the base the result of
the process occurring in the fibers but not the course of the process itself can be observed.

With respect to the real part of the base, the space §° and its mappings in the form cf tori are
placed in an imaginary domain. Because of it in the real part of the laboratory subspace the fun-
damenton is not directly observed. In the iong run the elementary particles are the mappings
of the fundamenton properiies onto the rezl part of the base. Two stable states of the fundamen-
ton have corresponding mappings in the laboratory subspace in the form of clementary particles
whose parameters coincide with those of the proton and electren and because of it these states
are identified with the proton and electron. The metastable states of the fundamenton have
corresponding instable (shortliving) elementary particles, certainly including resonances
(see DR 25).

Thie fiber in which toroidal objects as the mappings of the entire §° onto the canters of the Uni-
verse are directly observed has no time course, the time is “frozen”. Time revcals only in the
“dynamic" fibers of our enclosing space which form the geometrical constructions with the pseudo-Rieman-
nian geometry. In this case §? turns into the Einstein Universe and the immovable tori turn into a
pair of poini charges of the fundamental field moving along the gecdetics of the pseudo-Rieman-
nian geemetry on the torus surface.

In TFF the mappings of the processes, occurring upon the torus surface, onto other fibers
of the fiber bundle lead to the whole manifold of geometrical structures of FF charges.
Morecver, in TFF it turned ou! to be possible to understand why the principal unified funda-
mental field has the nature of the two-charges field. Really, the force lines of the field go “from
thecharge” to the center (each point of the space can be a center}, where they begin toreturn
and go back “to the charge”. The change of the charge sign follows from the following trivial
property of integrals:

R )
Ipc.fu= -—_rpd'n. 5.1
[} R

The symmetry of these two types of interaction when the force lines are closed within the
bounds of the Universe is so great that positive and negative charges of the fundamenton,

speaking strictly, are equal to each other and the total charge is equal to zero. Therefore, strong
and supersirong interactions between the structural forms nearest to the fundamenton have a
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dipole or muitipole character under quasiclassical description. The electric fieid coanected with
the finite charge criginates as a resulvof the break of this charge symmetry of FF in the space.

In TFF further examinztion of structural clements shows that the simpiest “bare” elementary
particles originatc only from the stabie particies of FF. Itis from these simplest BEPs and anti-BEPs
that principal particles of matter, called elementary particles of the physical vacuum (EPVs), are
formed. They consist of BEPs and are superpartners of the elementary particles. Their spin is |
or (.

Yet, PV and its EPVs make a fiber which is not observea and consequenily, EPVYs can be cb-
served only in the excited state in the form of photons of ordiniary light. EPV is the union of BEP
and anti-BEP. Wken there is a surplus of BEPs, which do form the observed EPs and the struc-
tures of matter made of them, BEPs cannot remain in the original form. They are sure to unite with
EPVsforming quark structures, the latter are just elementary particles (in detail see section 5.7).

Within the bounds of this qualitative description the gravitational interaction has also a clear
origin. As it was shown in the papeis [48—52 ], in TFF gravitation is the result of screening the
force lines of FF by the elements of the EPs structure. Oaly the force lines “to EP” go through EP,
thelines “from EP” do notinfluenceit. If in the structure of EP all elements had been iransparent
for the lines “to EP” then gravity forces would not have originated. Yet, the screen exists and the-
re are forces.

52,

The first step. Realization of the idea of interpretation
of the Null space. Deduction of the equation

for the scalar component of the fundamental field

In this section we consider that in TFF the Nuli subspace is homeomorphic to the three-
dimensional sphere, i.e. toa set of points

S={xpxprpx)CRIZ+ 2+ 5+ =1} (5.2

Further on we examine how in the Null subspace ihe cell and group structures are given and
how the time coordinate is introduced. in the Null subspace it is necessary to give a certain map

E R S%, (5.3
the closing of the image of which would coincide with the whole sphere 5.

The following mapping may be 1aken as such a map:
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It is easy to see that the mapping (5.4) really works in S° because the sum of matrix elements
squares in (5.4) identically equals a unit. It is not difficult to be convinced that (5.4) is one-to-one
mapping orto the whole sphere 5° without the point (0, 0, 0, — 1), i.e. it is a map whose closing
coincides with the entire sphere 5.

We now cxamine in detail the topological structure of the Null subspace in TFF. It follows from the
definition that 5% is the closed topological manifold (i.e. it is compact and has no edge). Besides,
itis evident that any point of 5 is its center. Now we show that in the Null subspace it is possible
to introduce a structure of the finite cellular space. For this we give the definition of a finite cellular
space: the finite cellular space X is called the Hausdorff topological space provided with the finite
cellular partition ¢W which means the following representation of the space X in the form of the
unification of the finite number of the disjoint subsets:

N
X=Ux, (5.5)
i=1

on the elements of which the integer non-negative function is defined:

dix,)EZ;d(x;) =0, (5.6)

where d (x; ) is the dimension of the cell x, . In this case the continuous mappings have to exist:

f;: Day) x; ;.7

¢D%is the ball of the d dimension) under which

fi:IntD dx) _, X, is the homeomorphism; (5.8)

£,(@D9®)) = {unification of cells of smaller dimension }. 5.9
We construct a cellular partition of the space 5. For this we introduce the mapping:

h:D— R h(7)= = . (5100
I=r
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It is not difficult to see that it is one-to-one mapping of the interior of the ball D onto the whole
3
R

Now we introduce the following notations:

x =5%\{0,0,0, -1}; f, =€°h, .10
where £ is determined by the formula (5.4);

d(x)=3; (5.12)
X =1(0,0,0, =1); d(xy) = 0; (5.13)
/() = (0,0,0, —1). ' (5.14)

It is not difficult to see that the partition

S =xux : (5.15)

together with the formulae (5.11)—(5.14) give the finite cellular partition of the Null space.
Indeed, the function « takes the integer non-negative values f| (dD 3y= X,. The remaining part
of the requirements in the definition of the cellular partition is satisfied by its construction.

Thus, we obtained the representation of the Null space in the form of the unification of two
cells with different dimension. This cellular partition can be the basis for other cellular partitions
containing a great number of cells,

Further on we show that in the Null space it is possible to introduce a group structure, The
following facts are necessary for it. We show that the group manifold of the group SU(2) is
homeomorphic to the three-dimensional sphere 52, i.c. 1o the Null subspace in TFF.

Really, according to the definition, SU(2) is the set of the unitary complex matrices of the
dimension 2 x 2, the determinant of which is equal to 1, i.e.

SU@) = {4 = [gg)Eczx c*1A* =A7 detd = 1}, (5.16)

here

ab)* ac
9" - ) .17
means complex conjugation. For any complex matrix 4 = (‘: 3 } , for which detA = |, the inverse

matrix has the form

-1 _ d —b
A -(_c 2l (5.18)
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It can be easily seen.

On the other hand, for the unitary matrices with the determinant equal to a unit we have

Al=4" = gg) = (_‘z '2] ; (519
from which we get:
a=d b= -¢, (5.200

i.e. any matrix from (5.16) has the form:
_ [ ab
A= (_H) . 5.21)
In thiscase detd = la|? + 1612 = 1, Now we determine the mapping vy : §* — SU(2)
in the following way. Let it be (x,, x,, x,,x,) € §* (i.e. X +x3 +x + + x2 = 1).Suppose
x, + ix, x, + ix
s ) [_x; T prBlcaun. 52

It can be seen from direct calculations that the obtained matrix is unimodular (i.e. it belongs to SU(2)).

Besides, it follows from (5.21) that the mapping & : SU(2) — §°, determined in the follow-
ing way:

(_gg] 2 Rea,Ima,Re b, Imb) € §°, (5.23)

isinversetoy,i.e.

bey=1Id; yeb=1d. (5.24)
So, we have shown that v is a homeomorphism. Using this homeomorphism in the Null space 5!
the group structure can be introduced by supposing

axb=y"(y(a)= y(), (525
where + is the usual productin SU(2). On 5? the obtained group is naturally isomorphic to SU(2).

All the discussed above was related to the pure spatial part of the Null subspace. To examine

the space itself as well as the time in the Null subspace we embed itinto a certain manifold of the
dimension 4:

B:S*= X, (5.26)

and according to the definition, we consider that in X the metrics is given with the signature
(++++) which on §° coincides with the natural metrics and is the Null space-time. Thus, in 5% the
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coordinates xy, xy, x5 are the spatial ones and xyis the time one. The element of an interval in the
obtained space-time is calculated by the formula:

ds* = dx% + dxf + r-.‘,\'g + a‘xg. (5.27)

We now examine in detail the question of the real but not formal mathematical time course in
such space. In the theories SR and GR the notion of the light signals and the postulate on the light
velocity constancy are used to determine the time interval beiween the events. Asitis known, light
i5 spreading in space-time along the isotropic geodetic trajectories for which

det = 0. (5.28)

In the case of the planar Minkowski world with the signature (—+++) the condition (5.28)
determines the “lighicone” for any point of the space-time, i.e. a certain subset of the Minkowski
space on which the world lines of the light signals are placed. In the case with the metrics (5.27)
the condition (5.28) always gives the only point (i.e. the light cones degenerate into the point).
This may be interpreted so that the light signal does not spread at all in space with the metrics
(5.27). (As we see further, under the consideration of complexification of the Null space-time, it
spreads in the complementary subspace). Because of it we cannot determine (informally) the
time intervals betwecn the events in the Null space-time, i.e. the time is “frozen™ in it.

The problem that faces us now is to pass from the general understanding of the nature of the

Nuli subspace, its space-time structure, to the principal bricks of the world of matter, i.e. to the
structural elements of matter.

In 0SS, as it was noted above, there is a structure of the cellular space. Since 0SS is §3 then it
is evident that the center of each cell is simultaneously the center of the entire Universe because
in 53 each point may be its center. Then it is eviden! that these centers of cells are the very signed
points for 0SS as well as for the cell. 0SS as well as its cells are the Hausdorff spaces (see DR 1 and
DR 2). Thercfore, the signed points should have the neighbourhoods. Thus, we conclude that
cells are signed points with the neighbourhoods. This is according to geometry. But since the
entire closed Universe is mapped in each cell it is natural to consider these cells to be micro-
universes described by the same equations of relation between space-time-matter. Naturally, the
scale relations of units, determining the time, the space, the matter in the Universe and micro-
universe should be evidently different.

In this case the usc of the equa tion of the Triunity Law (equation 5.53) for the Universe and
micro-universe means the scale invariancy of the laws controlling the matter, Thus, for different
subspaces the Triunity Law, which is further on considered in detail, means the scale invariancy
for the units determining space- time-matter. This very invariancy was discovered by Einstein by
means of his equation, yvet, ke had no time to clear up its geometrical and physical nature,
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Since the cells in 0SS zre micro-uriverses and at the same time the signed poinis with the
neighbournoods,then bourdzries of these neighbourhoods are the very Schwarzschild
spheres and the cells are black microheles.

Denoting the radius from the signed point to the Schwarzschild sphere in this black microkole
by R, and carrying out further calculation in the spheric coordinates, in which the radius-vector
roriginates in the signed poini-center of the Schwarzschild sphere, we have to conclude that the
coordinates outside the sphere, i.e. under r > R and inside it have to be different. The difference
which would simultaneously satisfy the equatinn of TL, the principles of PYDS and the geometry
of fiber bundles in TFF may be only the following: if the space outside the sphers is real then in-
side it the space is imaginary and vice versa, [tisimpeortant tofind the relation berween these coor-
dinates. This relation is sure to exist, since both coordinates describe the same objec: but in

different subspaces. As far back as in the paper {84 ]it was ncied that the coordinates insiae the
sphere and outside it had to satisfy the condition of the mirror reflection from the sphere, yet, it
was not mentioned there, that these coordinates belong to different subipaces. That s
why tlie relztion beiween them may be not simply algebraic but should be given through map-
pings.

So, if we consider that the radius-vector Foutside the sphere is a rzal value, then such relation
between the corresponding imaginary coordinate ir inside the sphiere and its analytical continua-
tion has tc be given by the mapping:

firir— E;—. (529

The obtained result allows to determine the scalar component of the fundamental fie'd. Real-
ly, a rather general equation for the scalar field potential is the Klein—Gordon —Fock eqratior
Ao(r) (¥)R?g(r) =0. (5.30

Here R = k / mc . The solution of this equation is the Yukawa potential

T il (5.31)
¢ =g, .

if there is a negative sign before the second term in (5.30), and is the poteatial

e—'i'?/ﬂ
¢ =qf—, (5.32)

if there is a positive sign before the second terd in (5.30).

Itis easy to see that ihe last equation has no apparent physical sense since there are real and
imaginary coordinates init. Yet, if we interpret it as a potential in mirzed coordinates and rednec
it to the description in one space only using the relation (5.29) then we cbiain the putential



¢=9q "_M-. (5.33)
r

[t 1s easy 10 see that this potential is not the solution of (5.30). Yet, it is the sclution of a more
general equation

&9{f}{t}ﬁ"ep(r) =F{). (5.34)

—-R.r f R ”

where F(r; =gq —'-r,— [f:— -2+ 2l This is the very equation for the scalar componzani of FT,

and tke potential (5.33) is the potential of the scalar component of FF (Fig 5.1).

P
sF
\
e Y $=T (Coulomb)

Fig. 5.1 Changes of potentizl, inlensity and charge density of fundamental field scalar component along
radius-vecior



The potential of the scalar component of FF has no divergences in any point. The same goes
with the intensity of the field and the density of the charge in any point of the field if they are
determined respectively:

-R/r

3 _ _ e Ry 7
E=—gradg = ¢ - (1—-;)r, (5.35
—R/r
=Ll divE=2Re nn_ &
e divE v (2 = ) . (5.36)

Fig 5.1 shows these relations in the form of a diagram. 1 is of a special interest thar

Q=4ﬂ_rpdu=qe-”'(1—-‘}) =g, (537
i

where v is the volume. This means that the constant g with the dimension of the charge is numeri-
cally equal to the integral of the total density of the charge over the whole infinite Euclidian space.
The physical sense of this result is not changed in spite of the fact that the Universc is 5 and not
the Euclidian space, because, firstly, §* isembedded into the enclosing space ®*! the spatial part of
which is Euclidian, secondly, the similar result can be obtained in non-Euclidian space as well.

Since the potential of FF leads to the calculated charge which is not only finite but also nume-
rically equal to the constant in the formula for the potential, we have to state a deep internal self-
consistency of this potential, which no potential known in modern physics had cver before. Besides,
from (5.37) it follows directly that the charge related to the center of the black microhole struc-
ture, i.e. to the signed point, is the mapping of the charge of the whole Universe onto it.

53.

The second step. Complexification as a transition

from the processes occurring in the fiber and the base
to the processes observable in the enclosing space

In TFF for a complete description of particles the concept of the fiber bundle is used:
p:B x U‘..-- B, (5.38)

where Bis the base of the fiber bundle; U, is the fiber (orits group) corresponding to the subspace

with index {, which under such consideration turns out to be complementaty to the space 5. The
fiber placed over the point b € 8 is attached to the base in the only point. Consequently, the
whole structure existing in the base cannot be directly observed in the fiber and vice versa.

We show that the similar description of the complementary subspaces may be abtained under
the consideration of the broadened (complexificated) base space B and the disposition of the
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subspace U, in the imaginary domain of the space B. Different methods may be used allowing to

map the structures given in the fiber onto the base and vice versa. We consider the Null subspace
of FF discussed in the subsection 5.2 as the base B.

We now consider a pure spatial case. Naturally, in this case the space B is embedded into the
brozdened (complexificated) base space B. In local polar coordinates this embedding can be gi-
ven in the following way:

r\ & r+i9Q
B =16

- |8 +i0l B, (5.39
[}

¢ +i0

Spaces U{ complementary to B can be considered as embedded into the imaginary domain B.
This embedding is supposed to be given in the following form:

'r; g {0 +in
U, 2 l*’c 2|0+ie| e, (5.40)
lfP; lo + l%J

We show that in the broadened space B spaces Band Uy cmbedded in it are complementary to
each other. namely, they cross strictly in one point. Indeed, if we suppose that

r.!'
8.l e BN U .
1Px]

then considering <5.39) we have:

Im {r,) = Im (8,) = Im (¢,) =0, (5.41)
where Im is the imaginary part of the complex number, and considering (5.40) we have:

Re(r,) =Re(8,) =Re(¢p) =0, (5.42)
where Reis the real part of the complex number. But the only pointin B which can satis{y the con-
ditions (5.41) and (5.42) is (0, 0, 0). Thus, we have shown thal the description of the complemen-

tary subspaces by means of the broadened (complexificated) space satisfied the requirements of
the fiber bundles.

Now we consider how the potential of FF originated in 0SS and its cells would be mapped onto
other subspaces. For this aim we use the formalism given in section 5.2. We clear up what the
potential of FF turns into, if itis givenin B. With this aim we extend the definition of the potential
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of FF over the entire space B by means of the embedding (5.39) and the analytical continuation,
In local coordinates we have:

. o _ g .
F:C ~Ciglr) =" (5.43)
We see that § is given on B by the same formula as on B:

;;:Uc—-ﬂ. (5.44;
By taking the superposition ¢ © g we have:

GegilUp—~c . . (5.45)

To give a certain potential on the subspace U; itis necessary to give the function+ : ¢ — R . This
superpositiontege & does give the potential on the subspace Uy:

¢ =ToFo i U+ R. B (5.46)
We consider this potential as the mapping of the potential from the space Bonto the space Uy in the
fiber bundle of FF. As a function = : ¢ —+ R we take the function

7(c)=lcl ER. (5.4T)

This function (the modulus of the complex number) is suitable by the fact that it takes the zcro
value only in the zero point.

We rewrite the formula (5.46) in detail and clear up into what the potential of FF turns vnder

such mapping. We have:

(8 0) = 1@ (& (0, ¢)) = 7(F (ir, 9, i) =

_ E—R.’Irl _ 1l lad®| _ g (5.4R;
lq i r T

(since |e'm‘(’| = 1forallR,r € R),i.c.

o (r.8,0)=q/r. (5.49)

Thus, we see thai the potential of FF, given in the Null subspace, turns into the Coulomb poteniial
under the mapping onto the complementaty subspace. Besidcs, it means that under such mapping
the nonlinear part of the scalar potential of FF is lost.

We consider the guesticn how the information from the base can be transferred into the fiber
and vice versa. We begin with the mapping of the metrics from the Null space-time onto the
complementary spaces. In this case the four-dimensional Null space-time (5.27) 1s considered as



B. The four-dimensional complex space is considered as B. Bis embedded in the real part of B. In
loca! coordinates this embedding can be represented in the following way:

¢

X0 Xp + 0i
x; x, + 0i
% - Xy + 0 (5.50)
lx3 £y + 0i

The formula for the metrics (5.27) is spread over B by means of the analytical continuation. The
type of the formula (5.27) is not changed in this case. The space-time Bis embedded into B so that
the spatial parts of 5 and U; are complementary to each other:

(%o *0
v, s M2 en
£ lxz ixy ’
X ix
;‘3 3

Consider the superposition ds ¢ m for the space U We have:

ds? =d(n )2+ dm e N2+ .o + d(nlxg)? = dxd — dx? - dxd - dxd. (5.51)

Thus, we see that, firstly, ¢s” is real, secondly. the invariable-sign metrics turns into an ordinary
type of metrics of the Minkowski space. Ordinary light cones appear and we can determine the flo-
wing time, it “revives” in the complementary subspace. The above-mentioned procedure is inver-
serin the same way (by means of the complexification and the embeddings) it is possible to pass
from metrics (5.51) to metrics (5.27). In particular, in this way (as the motion in the complemen-
tary subspace) it is possible to interpret in TFF the instanton-like solutions of the field equations
obtained in [106 ] for the mnetrics (5.27).

So, we can see in what way the charges of FF distributed in space and frozen over time are
“pressed” into the points at the boundary of the neighbourhood. The time “revives”. The charges
bagin to move. The scalar poteniial of FF turns into the Coulomb potential.

Besides, what is also of importance, we showed that the fiber could (and should) be conside-
red as the space situated in the imaginary domain of the complexificated base.

5.4,
The third step. Unification of both the space-time
and matter properties in the Triunity Law

The fundamentals of the mathematical formulation of TL were discovered by Einstein and
were laid down into the basis of GR. When formulating GR Einstein wrote down the principal

equation of the theory so:
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R, -lg,(r-20)=2C7,, (5.52)
c

interpreting it as the equation of the gravitation field. Further on [12 ] GR was interpreted as the
gravity theory and the term “GR " was considered old-fashioned, though there were some bright
exceptions to this rule [41, 42, 110, 123]. In recent years especially in works of A. A. Logunov's
group [62—65 ] the question is being seriously discussed whether the equation (5.52) as such is
the equation of the field. Thus, for 70 years that passed after GR formulation its fundamenialsare
still being discussed.

All it means that the equation (5.52) is neither the equation of the gravity field, nor the
equation of the physical field at all. Therefore, in TFF it is considered that the following
interpretation of the law discovered by Einstein corresponds to the totality of all known
theoretical and experimental data. This is the space-time-matter Triunity Law. And that is all.
This law is valid for all types of physical fields including naturally the gravitational field as well,
but this law is not the equation of the field. A. A. Logunov and his collegues [62—65 ] affirming
the fact that the “field theory of gravity™ is required and that (5.52) is not the field equation, are
undoubtedly right from the point of view of the theory discussed here. What this field should be
like is a special problem but (5.52) is not the equation of the gravitational field.

In TFF the law found by Einstein is generalized and for the principal objects of TFF itis
written in the form:
" 8
I ¥ (4 =
RY) — L g (R, — 2,) = T:E %, (5.53)
where { = 0, 1, 2, 3, Vis the index of the subspace (fiber and base, it is discussed in detail in

[14]). In the non-fibrated space the solutions of (5.53) coincide with the known from GR
solutions of (5.52).

Under the consideration of the solutions of (5.53) in all subspaces sufficient for the EPs
description, the situation substantially changes. We consider it by such an example. As it is
known, in GR there is some difference between the coordinates used under the solution of (5.52)

and the real coordinates of the physical object to which these solutions refer * ),

L3
) L. Brillouin [123] indignant at the ambiguity of the values obtained in GR called it “science fiction™. As it is shown
here, there are no faniastic things, simply in GR there was an incompleteness of physical objecis description.
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So, for example, in the Fridman space for a maximal “physical” coordinate we have
(107, p. 52]:

rp-frodr-fra—-g:f—_g-wro. (5.54)
° R

where r, is the curvature radius of the closed “universe”; T is the radial coordinate in the
sphe rical coordinate frame.

At the same time the volume of this closed universe is determined not by LA but by r,:

- e
Vy = dur [ —T41- = 247, (5.55)
a (1 +r7 2

If we take cther examples then we can obtain quite different relations between the radial coor-
dinates and “physical” ones.

All the above-mentioned concerns the solution of (5.52) in GR. Under the solution of (5.53)
in TFF there is nosuch problem. Different coordinates are obtained due toone reason only: in GR
the object is unlawfully considered in one non-fibrated space, itis the origin of all difficulties. The
physical coordinate in (5.54) is the coordinate in the space where the distances are determined
along the circumference and the volume of the closed universe is determined by the geometry of
subspace, where the curvature radius r, is determined. If A = 0 then in 0SS for the closed macro-
or micro-universe with the radius r,, by taking into account (5.53) we obtain:

rg=A"11"%) (5.56)
and

I .51

where p is the density of the mass. For the mass of the entire Universe we have:

Va o
m = W;. (5.58)

If y is measured in the units ¢* / m* , g— in the units VAc , r— in the units A / mc, then:

“Vwe have omitted index .



2 . ; ;
y:Ayf?;q‘=Aqﬁc:r=A,-r§E. (5.59)
where A, Aq. A_are the dimensionless coefficients. And for p we have:

p =t (5.60)

u Q7
Besides, for the average value of density the equality

o

P=T33
2Jrru

(5.61)

is valid. And then for dimensionless coefficients we find the first equaticn:

A

I

_2
b (5.62)

It is of interest to note that in the case of the Euclidian space we have the equaiity

A _ 3
Aq Ar
The solutions of (5.53) for different subspaces show that they differ by numerical values of
A, A and A, for the elementary structures corresponding to these subspaces. So, for 388

Ar Aq =A = 1 . Therefore, for the fundameuton:

9 4
=-33 = Rp=E—. 5.63
Y e q} he re My (3.63)
We have considered the solution of TL equation when the cosmological term A was not equai
to zero. [f we consider the equation under A =0then the solutions will be of different form. Though
GR exists over 70 years the physical significance of this term remains unclear and therefore, in
most solutions it is taken equal to zero. To clear up the physical significance and the value of A-

term in TL we consider the two important solutions of (5.53) under A-term equal to zero.

For the following below it is important to consider the solution of TL equation for a family of
black holes. In the simplest case it is a self-consistent problem for two masses which have charges

as well. This problem was substantially considered by S. Chandrasekhar [46 ] and furtheron we
shall use his results.

As in GR the space-time is considered as the four-dimensicnal differentiable manifold
provided with metrics of the Lorentz signature which isequalto = (= — 2) , where nis the space
dimension, the sign is chosen by consent. In our case n= 4, the signis *+" and the metrics in the
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case of the motion of two masscs m, and m, in self-consistent gravitational field of these masses
has the following form [46 ]:

A = (cd) /i — i [(dr)? + A(do)? + (7 sin®,) (de)?], (5.64)

where m,, m, are the point masses; a is the distance between them; r, ¢, 8, are the spheric coor-
dinates.

The signature is equal to-2 (+ ——-),

=1+08 i G 65
= % 'l;i+(rf+¢2—2¢lr‘llnﬂl}“=;i 845

We denote the space-time by E. Then we introduce the fibration. E with the given metrics can be
represented as a direct sum of the two disjoint subspaces E, and E_with dimensions 1 and 3,
respectively:

E=E,®F_,
dimE, =1, (5.66)
dimE_ = 3.

We find a common point of the two subspaces E, and E_. The subspace E, has one coordinate
tin the space £ and is given by the system of equations

n=0,
6,=0, a)
e=10.

This is the subspace of the points of the form (0, 0, 0, ¢ ) in the space E. The subspace E_has
three coordinates: r, ¢, B, and is given by the equation
t=90. b)

This is the subspace of the points of the form (r, ¢, 8, 0 ) in the four-dimensional space E. A com-
mon point of the subspaces E, and £_ has 1o satisfy simultaneously the conditions (a) and (b).
Consequently, this point has coordinates (0, 0,0, 0}, i.e. acommon point of the subspaces E, and
E_ is the zero point (0, 0, 0, 03.

On these subspaces the metrics are introduced in a natural way:
E, is the subspace with positively determined metrics:
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ds? = (cdt)/u?; (5.67
E__is the subspace with negatively determined metrics:

ds® = —1® [(dr,)* + r2(de,)* + (r?sin,) (de)?]. (5.68)
Then the metrics (5.64) of the space Eis the sum of metrics (5.67) and (5.68):

ds* = ds? + ds* . (5.69

These subspaces E, and E__ can be interpreted in different ways. For example, they can

beinterpreted as numeral subspaces without metrics, just as the space of complex numbers can be
considered as the two-dimensional numeral real-valued space. Yet, for the solution of our prob-
lem they should be considered as real and imaginary subspaces of the space E : the coordina-
tes of the former (better to say a coordinate) are the real numbers, the coordinates of the latter
are purely imaginary. We now clear up what these spaces are like. The structures of these spaces
are different but the points inside any of them have the same structure. We consider the limit ca-
ses:u~ oo and u=0.

DDu= o ,then
(cdt)*/u® = 0and
ds* = —u® [(dr,)? + r, (d8,)? + (7 sin%0, )(de ) ] = ds* .

We solve the equation (5.65) foru = o :

=fpe, M 2 C
“ * ? (rz+¢ - 2ar, sinf, e

After some easy calculations we obtain the equation:

® =l+E'-G+ %8
n r—:tl:z

which has two rootsry =0and r, =a.

We substitute these values into the original equation and obtain:

mg "y G
w =] A - 2 2.

n (rfi-az—u:lains’ )I'zcz
Underr, =0

o =1+ o + o,i.e. the equation is valid.

Underr,=a

m



= 1‘1 PO .. (R
b+ (2::‘ 2% sind )12 2

This equality holds ouly for 8, = E and shows that the condition corresponds to the motion
- n
with Bl = "i'.
Thus, we have cleared up that E_ is the subspace of the space E, inwhichu = o, r, = 0,

6 = 3;-. As it was proved by 8. Chandrasekhar [46 ], under the events horizon radius r, =0 the sur-

face area of ihe events horizon is equal not 1o zero but to the finite value of 4wm?. But this value is

reached in the imaginary subspace E_ with the negatively determined metrics (5.68).

liis easy to see what it means: in the real subspace r, = 0 and the surface area of the events
horizon is equal to zero as well. But in the imaginary domain §>0, and in thiscase r, = 0, but this
radius is imaginary. Indeed, the area of the sphere is:

5
S=4‘D’f12=br|2=zr';
172 4mﬂ
r,-{%) ;s=4-nmf-url=( ) =m = 0;ir, =im,.

This radius is imaginary, in the real space the zero radius corresponds to it.

D u=0.
We now solve (5.65) for u=0:

m
gy _.LE Mz (5.70)
Tha l-{1-2+a - 2ar, 5inf, )" 13

For this aim we put the following requirements for the equation:

D m <0, m,>0;
.t ;
DR >R, R, = kp , where R and R, correspond 1o r; and r,;

J)a=R =R,
4) R Ry, m; m, are situated in the same plane;
5) the angle 8, is known;

6) cand G are known;
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imy
7)12._=k :

tmy 1 m?
__k
8 Ry = oz kh-

We find the relation of m|, m;, R, afrom G, ¢, kg, k., A, ky, . From cendition 3 we find R,:

R,=R| ~ a. From condition 2 we find a by substitutior. R, inio the formula

Ry — kg R = —kpa;
Ry (kp —
. . i 8 (5.71)
kg
We express m, through R :
il
Jﬂ.i = Kc' kr'f x [572)
We find m,:
imgl = Ky Imy1 = =2 1icylk,, .
m th m
Sincem; <0, thenk, <0and |k, | = = &, , thus,
my =i g >0 (5.73)
2 RI"' h®m * 2

The values 8;, cand G are known. By substituting the values a, m|, m, from the formulae

(5.71), (5.72), (5.73) respectivcly, into the equation (5.70» we find R, for the equation (5.70) in
the form:



Bk, G

[
< |
l

Em

Z(kk—l)mnﬂl]”z‘
R ) J

R, =

(5.74)
(kg - 132

R
1+ |2 |
2

We insert the obtained value of R, into the formulae (5.71), (5.72), (5.73) and obtain a, m 1 My

versus G, ¢, kg, k., h, k,:
R* *m h

172
kp—1 | fk,0 [
= [ : [ F— “1—1-! ) (5.75)
kg [|+ kg =1\ 2(kg - 1)sinf,
l ( ] kg
172
Rkye [ ¢ (42 + (kg =1)2~ 2kp (kg —1)sing)1'/2
my = , -
© |ake Ky kg~ LK. + (kg = 1) = 2kg (kg — 1)sin8, 172 ‘
L (5.76)
| Akye  (kk(2-25n8)) - kg (2~ 20ia8;)+1]""2
O kpkg- (KA (2-20n6) - kg (2—20in0))+11'72
1/2
Kk, o [k (2-2sin8 ) —kp(2—2sin6,)+1)72
- S R 1)~ %R 1
m, = -k, ~ s (5.77)

ko kg =~ (KR (2= 28in6) )~ kg (2-28inf) ) +1)

Thevalues R, a, m,, i1, from the formulae (5.74), (5.75), (5.76), (5.77) are the solutions of
the equation (5.70) under the given conditions.

The metrics (5.64) under u =0 has the form:

ds® = {cdt)?/u® = ds3 .

Thus, the subspace E, with the metrics ds_ is the subspace of the space E, where u=0and R, takes
the valus of (5.74).

The space-time E can be provided with the fibration structure because according to (5.66), it
is expanded into the direct sum of the subspaces E, and E_. E, can be considered as the base and
E_can be considered as the fiber in the enclosing space E. The equations of the zero sections of the
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fibration E are the functions of mapping from E onto E, and E_. The section of the fibration Eis
such mapping: ) : E, —+ E, whichin the pointx € E, takes the value in the fiber over the point x.
We choose the zero section because it is isomorphic to the base. Really, the zero section puts zero
in correspondence with each point & € E,. And the isomorphism between the zero section and
the base has the form:

E, x{0}+ E,
(5,0) = b
(5,00 ~b,5€E,.

The equation for the base is obtained in the following way: dim E_ = 1, consequentiy 1o pick
out E, in the four-dimensional space E it is necessary to give the system of three equations (since
1 =4 = 3), As those are the equatious of the zero sections, they have a simple form:

= 0,
6 =0, (5.78;
p=0.
Sincedim E_ = 3 it is sufficient to give one equation (because 3=4 — 1) to pick out E_ in the
four-dimensional space:

t=0, (5.79)

which is also the equation of the zero section. It is not the unique mode of the subspace setting, the
latter can also be set by fixing basic vectors or a normal vector.

Thus, the unknown functions of mapping are given by the system of equations (5.78) (for
mapping from Eonto Z,) and by the equation (5.79) (for mapping from Eonto £_).

By considering this concrete example we have shown what great cognition capacity charac-
terizes the approach demanded by PVDS, i.e. the need to use fiber bundles to describe any
structure if we suppose this structure to belong to an object viable and able to develop. Really,
by considering the similar problem in GR, S. Chandrasekhar obtained the paradoxical result
explained neither by him nor by any other scientists: a black hole with the radius of
the Schwarzschild sphere equal to zero has the surface area not equal to zero. Underour approach
the paradox vanishes. It turns out to appear because they unlawfully consider the space as
nonfibrated, while in reality it is, without fail, a fiber bundle.

In the fiber bundle all things take their own places. In the base of the fiber bundle, which is the
real space, the zero Schwarzchild sphere surface does correspond to the zero Schwarzshild sphere
radius. In the fiber, which is in the imaginary domain with respect to the base, the radius of the
sphere is not equal to zero and naturally, it corresponds to the Schwarzschild sphere surface une-
qual to zero.
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Thisis a bright example of the space metamorphosis realization. The same object in one sub-
space has a black hole dimension equal to zero and in another subspace the black hole dimension
of this very object turns out to be finite and unequal to zero.

Now we have approached the possibility to clear up the nature of A-term in the Triunity equa-
tion. Under the deduction of the equation of the scalar component of FF in the subsection 5.2 we
have considered the mappings of any points in two subspaces, both outside the sphere and inside
it. In this case neither the mass nor the charge were localized in the finite and, moreover, in the
small vclume. Neither by A-term is the object in question constrained within the space in which it
is localized, under the solution of the principal TL equation.

Atthe same time, when solving TL equation when A = 0, we consider the puint charges and
the point masses, though the space around them has zero density of the charge as well as the mass.

The following result obtained above is very important as it is slightly raising the veil of the
mystery of A-term. When we considered the scalar component of FF we could see that the integral
of the charge density distributed all over the space is not only convergent but exactly equals the
charge which originated the field investigated by us. The charge is a point one and is situated in
the center of the symmetry.

From the considerations above and the facts below the following conclusion is evident: in the
TLequation the A-term is sure to be in the only case when the equation characterizes the distribu-
tion of the mass and charge over the entire investigated space without their localization in the
finite volume. In thecases whenin the object in question situated in one of the fibers of the enclos-
ing fiber bundle there appears the mapping of the localized charge (mass) which, without fail is
moving, the TL equation for this object should not include A-term. Thus, A-term characterizes
distribution of mass and charge over the entire space, distribution which does not allow localiza-
tion of mass and charge in the finite volume, outside which there is neither mass nor charge.

Further on we shall see that the nature of the spinor fields discovered by P. Diracis tightly
connected with this exceptional feature of the matter mapping from the structure continuously dis-
triouted over the space onto the structure consisting of the localized, as a rule peint objects, which
are inevitably moving.

5.5.
The fourth ster. From TL to the structure of fundamental particles
of matter in all mutually consistent subspaces

In the previous subsections it was shown that tori of finite dimension are embedded iuto the
Null subspace. Since the dimensions of the tori embedded into the Null space $* are substantially
less than the curvature radius of this sphere, it can be considered with great accuracy that the tori
are embedded into the flat space R>. In this case the tori embedded in the Null subspace are
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considered as the third subspace. Because of the above-mentioned “frozen” time effect in the
Null subspace it is lawful to consider “frozen” trajectories on these teri. (For the transition from
the frozen to the current time see the subsection 5.3).

All BEPs in the theory have a structure of one type and are considered as excited states of one
“priming" particle, i.e. fundamenton.

The fundamenton is the tachyon consisting of one dipole of fundamental field charges ¢; and
¢,. The mass of the dipole is determined by the energy of interaction of charges g, and ¢, and has
different signs: the internal charge has the positive mass (m,) and the exiernal one has the
negative mass (m;).

The geometry of the fiber bundle results in the fact that the mappings of the tachyon dipole
ontc 2SS and 1SS originate quite a different structure and different properties of the particle
observed in these spaces (Fig. 5.2). Thus, the structure of BEP is different in each subspace. The
same goes well with the geometry and the time scale. The mapping of BEP propertics from 35S
onto 2SS occurs in the way as if there existed some intermediate subspacc (3 — 2), the properties
of which are mapped just directly onto 28S. Thus, the mapping

T32) = T(a2) " Tazy »

where

Ti32)" Ga = Ga.gyand [(33y: Gzgy = Gy (5.80)

is done by means of the intermediate subspace (3 — 2). All real and intermediate structures of
BEP are shown in Fig. 5.2.

We now consider the procedure of the subsequent mappings of the BEP structure from 35§

onto 188 (see Fig. 5.2). We consider the third subspace as two tori embedded into R®. Torus | has
no internal diameter and parametrically is defined as follows:

z=R| sin @ ;
x=R (1+cosB)sing, 0<¢<ln; (5.8
y=R (l+cosf)jcosg, 0=0<27.

Torus 2 is parametrically defined in the following way:

z=R,sin8;
x = (R + Rycos8)sing, R >R,; (5.82)
y=(R + chusﬁ)ms;p,

where 8 is the angle of the particle position on the torus surface, measured counter-clockwise; gis
the angle of the motion trajectory turn along the angle 0 relatively to the symmetry axis of the
torus; x, v, zare the Cartesian coordinates, the zero point of which is in the center of the external
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torus, and the axis z coincides with the symmetry axis of the torus, the axes x and yare situated
inthe plane of a great diameter section of the torus.
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Fig. 5 ZBEP structure in the following subspaces: 3;(3 + 2);2;(2 = l)and LDireciions of mapping chan-
nels P Main values of the given BEP observed in different subspaces.
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Anintermediate5S (3 — 2) and 2SS are determined in the plane z=0. The intersection of this
plane with tori 1 and 2 is considered as the mapping from 35S onto 85 (3 — 2). Under such
mapping in 8§ (3 — 2) three circumferences originate: the first one has the radius 2 R, and is
given parametrically in the following way:
x=2R;sing, 0 < ¢<2n;

=2 h eag (5.83)

The second circumference has the radius (R, + R, ) and the parameters:

x = (R, + R,)sing,
(Bi ¢ RAsne; (5.84)
¥y=(R + Ry)cosg;

and the third one has the radius (R; - R, ) " )and the parameters:

X = (Rl-—szsin‘p,

(5.85)
y= (R, — Rjjcosg.

We now consider the features of this motion. The motion along the torus surface takes place along

the coil line with the angular velocity mf_z and with the drift along the (n — n ; ) - coil screw line

with the angular velocity m‘f ,- There is the following relation between the integers n, n; and n,:

Ry (5.86)

n =

All points of the intersection of the n-coil line and the plane z =0 represent the image of the
structure in 88 (3 — 2). According to TL , the time scales ratio is the following. In S8 (3 — 2):

&)
o (5.87)
sbo!
andinSS (2 — 1):
172
o)
M y (5.88)

where i=1, 2 are the indices related to the first and the second tori.

L
) This radius is the width of the graviwational screen in the vacuum theory of the gravity |7, 48 — 52].
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According to the equations gy, = (1 — le = const andgmm = (1l = [.33”) , and taking

into account that ﬁsz) < land BEJ J> 1 we have:
=@ -1=n@ -1, (589

=1 - 6P =1 57 90

The value g&? has to be determined in this calculaticn because in the first subspace there is no
velocity of the structure elements.

The subspace (2 — |) is the plane onto which the mappings p| and p, of the tori | and 2,
respectively, are determined:

a) p, brings the planc point (R, sin 8, R cos 8 ) in correspondence with the torus | point
(. 8);

b) p, brings the plane point (R, sin 8, R, cos 8 ) in correspondence with the torus 2 point
(9:0).

Consequently, in 88 (2 — 1) the images of the points of intersection of the screw lines under

the mappings p, and p, determine the structure.

It is significant that the information enters into SS (2 — 1) not only through 25S but also
directly from 388. For example, the radii R, and R, are mapped from 355 onto 88 (2 — 1)
without any change. Under the mapping from S5 (3 -» 2) onto 255 a number of subparticles n,
and n, and the angular velocities remain without any change, and the radius is “deformed”
according to the law:

D LR g® L p® Bl A
R = 2R e R = 2R rand g = g (5.91)

From the above-mentioned conditions of the paramelers mapping from one subspace onlo
another it is easy to calculate all EP parameters in all subspaces (see Fig. 5.2). In 388:

"Sh = n&"i) =1 :mﬁa) = w‘i + mf:m?) = m'; + ujg;

3 3)
B = i R® =g, n, ;g = # RY = pyny; (5.92)
RY =R ;RY =R,.
InSS (3—2):
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n P = nd = n;
172 1/2

’ 2) ’ )
o= “(_:’;"ﬁ [52{] WP - ;.(ju—&nﬁ {%

R = 2R ;RSP =R + Ry ;

] (5.93)

(3+2) (3+2)
gD = o "R, ﬂw«zl — w, Ry .
1 - P2

[4
In 288:
nD = nD = pin® = D = n
1 172

o® 2) < o )

- - (E) - 25%(F)

. . ; i (5.94)
R = 2R, i RY 'uzq; .

@ . 2 o @) % )
B = el &,] B B (u_w[ﬁ] - 8,
InS8 (2= 1):
A3 = 3D = "z n - ny =k ael?z:
e ff] s e [%] ;
2 (5.95

R = R ;R = R, ;
(2+1) (2-1)
A = o n, B = w &K
1 c P2 .

€

18S is the base of the fiber bundle and therefore, we have in it:
R =R, =0;n=n=0;0=w=0;p=p5=0.
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But
=g -G, - -, (5.96)
3?0’: By E’ﬂu B2 ;-x’

where B, ,and n, , areinS8S {2 — 1).

5.6.
The fifth step. Calculation of internal parameters of BEPs

The quantum and relativistic properties of the primary essences of matter are determined as
it was mentioned above; firstly, by the fact that a space metamorphosis exists, and thereforz it is
impossible, in principle, to give the complete description of any object of microcosm considering
it only in one, for example, laboratory space; secondly, by the fact that in the space com-
plementary to our laboratory space the physical vacuum exists whose influence on microcosm is
decisive in many respects.

Nevertheless, the enumerated conditions of the origination of quantum and relativistic
properties allow to consider certain processes in which the doubles of the particles, unobservable
directly in the laboratory space, take part. In certain processes their behavior can be considered
as classical or quasi-classical. Though it sounds paradoxicalthese classical or quasi-classica! con-
siderations do not contradict the quantum description, but moreover, they provide the basis for
reasoning, without any invocations and mysticism.

Such calculation is possible for the description of the behaviour of the BEP structures in the
second subspace. To have the possibility of further transition to the mapping of the properties ori-
ginated in the second subspace and then mapped onto the first one we mainly make the calculation
for the functional space of the mapping from 2SS to 1SS, that is, in subspace (2 — 1). The calcu-
lation given below can be considered as the reasoning for the lawful use of S8 (2 — 1).

To provide the self-consistence of calculations in all subspaces it is necessary to bring the
boundary conditions into the concord, It makes impossible the arbitrary choice of the zero point
(the “basis” according to Fock [21 ]) and the orientation of this basis, i.e. the arbitrary choice of
the coordinate frame. Therefore, the symmetry center is taken as the zero point and the coor-
dinate frame is taken “attendant”, i.e. such one with respect to which the particle itself (the first
subspace) or its subparticles (the second and the third ones) are immobile.

For the central symmetrical field of the static or stationary problem we have the following
form of the interval sin CSS [7,p. 19]:

ds* = gy E df — g, dr* — g, d6? — g, d?. (5.97



Taking into account the Hamilton—Jacobi equation
‘*a—‘s; B _mit=o0,
ax d.
and considering the plane motion (d8 = 0) we obtain:
2 2
L [”] Ly 1 E] -mi =0. (5.98)
Eog \edt 2 o 33-.
In our proklem we have to find the solution in the form:
S=—Et+ Mg+ S,r)
Then

B _ .85y, 08 W
a todp 'oar ar

For (25, / ar)? we have:

2
(i‘_r] RLTLY +__)g
ar gmcz L n

ie.s, = [ [ — - (m* + *;: )g1,] ' ar . (5.99)

We find the value of the derivaiive:

L34 e
as g“M r
i O, ; (5.100)
aM e 172
1 22, M
i + =g
&g € £33
as
But — ﬁ'; = ¢, and consequently,
om, M (5.101)
£33 £2 ) -|if2
£ 11 M
_ [nl ¢+ —la
2 833
gmt

Andsince g, = Vg, ,then



/2’
2 2
E [ 22 M)
Byl S5 — [m°c” + —
__.‘.[cg £33 ﬂml

Butg,, = rz. therefore,
33

- Mdr o W
o=/ - ; Tl (5.102)
A5 s e
¢ £33/
Sincew = dg/diwecan write:
o = L L . dr
dt [ 2 2 11/2 di

[5-eel

Sincev = wr, (we denote dr/dt = v, ) this equation can: be written in the form:

o M
1/2
z 4
3 |E 22 M
r [‘:E'- [mc +-—1)200]
from which
- M -
172w
2 r
1B - (m2 s 2 gy,
2
& r
or
2 u2
Ezr —Ml‘-;-
C v
- (5.103)
LS 7

Frem this equation we can obtzin the expression for gy, for certain relations between E(m)
and M{m,r ). Indeed, if

2212 2
MZ =22 andE =

28 g’
then
|82
Bug = —"—qr—. (5.104)
f{ﬁl g
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Sincein this equation there is a radial velocity v, and a tangent velocity v the obtained solution

may be considered only in the second and third subspaces and alsv in the mode! corresponding to
the mapping of the second subspace onto the first one. This model is observed neither in the first
subspace norin the second one. Itisin the complex space but it determines the properties and pa-
rameters of the particles observable in the first subspace in the form of indivisible structureless
point subparticles.

In all three cases we consider the particle structure in the attendant coordinate frame, which
in this situation is equivalent to the proper coordinate frame. Since in TFF, as well as in GR, the
non-inertial motion is absolute, the linear tangent velocity v has a definite physical sense and has
to be considered in the proper coordinate frame.

In TFF in the third and second subspaces the structure of EPs and EPVs situated inside the
Schwarzschild sphere is described in the proper coordinate frame where v, is numerically equal to

v, and v as the relative velocity is absent but it has the significance of the linear velocity of rotation
and has to determine the metrical properties of the corresponding space-time.

The above-mentioned statement needs to be explained. The object in question in one of sub-
spaces has to be considered as the sum of orthogonally disposed oscillators, whose summary pro-
cess of oscillation along the radius provides the motion along the circumference, i.e. the rotative
motion in another subspace of this fibration. For the calculation of the entire object a summary
motion of two oscillators along the radius is important. The velocity of this motion is equal to the
rotative velocity along the circumference. Therefore, when in the above-mentioned calculation
we used the notions of two velocities v, and v, this was a tribute to the attempts to consider the
whole phenomenon in one subspace. This situation is analogous to the one mentioned previously,
when we tried to calculate an object (situated in the fiber bundle) in one space and obtained the
paradoxical results when the radius was equal to zero and the surface with this radius was finite.

In this case if to “remember” that there is only the motion along the circumference and
“forget” that it is created by two oscillatory motions in another fiber, then the unification of the
notions of the rnotion with the velocity along the radius and along the tangent would also sound
paradoxical.

From the equation (5.104) we have:
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Ll
s{%’=:—+;’—, (£ =1;

y__ 1-g = BV (5.105)
& Foa s V= BY¥%)

gV =1-p% (fiB) =@ -p)"?).

In all cases of transition through Schwarzschild sphere the signature in (5.97) has to be
changed. In the cases when a new value of gy, corresponds to the former value of g ;, then instead
of (5.105) we have:

g‘%) =1+ ﬁz;
gy =p2+ (1 - p?)%; (5.106)
g =1

To exhaust all the possible values of g, for different conditions of motion of EPs and their
structural elements in the fundamental field we consider the additional condition of the energy
minimum (the stability maximum ) corresponding to the given value of gy, i.e. the condition
aE / agy, = 0.

2
From (5.99), considering that 8o =1 — '33.3 =r¥;r = r:‘a {m, is the mass
¢
creating the field) we have:
E? = [An (1 = 200)® + m™c* + gopd, (800 200 » (5.107)

2
as
where A, = ﬁz i Agl8oo) = [;51 ; m is the mass moving in the field created by the mass
F,
Y
my. If we put the condition E / dgyy = 0 on (5.107) we have:

An(goe = 1) (38gg = 1) + m*? +M(l°°]

+2A,(gm}gm+a—gég§,=0.

(1 - 80) 800 +
(5.108)

On the Schwarzschild sphere surface r = r, and gy, =0 and, taking into account that

muer

M= 76 (5.108) resultsin the condition:

,2 _"'34?'2!2(3]
Yo l_4.‘,2



i me

Bl.:tithzl:nob\!r]iIl s +—— and consequently, on the Schwarzschild sphere surface g = 1;7 (B) = 1
9

and the mass m_ has an imaginary value. Thus, the stable orbit on the surface of this sphere is pos-

sibleonly in the second subspace (f (B) = 1).Inthiscaseunderr = r,, p = 1. Comparing this

result with the value of gy, given in (5.105) we see that

i

2) I__E 2-1) g 2

g‘w= r;g(m =l_'}=1_ﬁs
1+1

r
where L = p?.
r

Sog,,isdetermined in258 and 88 (2 - 1).1f A (g,,) = ay, - M ( a,,is theconstant factor), then
(5.108) also has the following solutions:

8“=%'.sm=l;gw-(}.

Considering the problem * ) of subparticles motion along the stable orbit and supposing that
A, = const, we derive from (5.108):

A (8o — 1) (38 — 1) + m* = 0. (5.109)

The solution of this equation under 80> Odetermines the domain of the existence of the most
stable orbits outside the Schwarzschild sphere. The stable orbit turns out to exist only under
8 = 2/ 3 (which corresponds to r = 3’1 ). Besides, the level of its stability is rather high. The

mass of the body moving on this orbit decreases due to the bond energy and becomes equal to
V8/9 m. The energy mc® decreases respectively.

In TFF the structure of a genuine elementary particle is situated inside the Schwarzschild
sphere. The motion of the given particle outside the sphere may characterize only the system of
two particles, i.e. the first type of the compound elementary particles. Further onin part IV, under
the consideration of the methods of particles calculation we shall see that the coefficient

9/8 = 2—3,; plays an important role in the calculation scheme of TFF.

Solution (5.109) can also be used for the analysis of the stable orbits inside the Schwarzschild
sphere. It is necessary to take into account the fact that in this case, as well as under the motion

*) The similar problem in GR was discussed by Kaplan [112].
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along the stationary orbit on the Schwarzschild sphere iiself, we have m? < 0 . What physical sig-

nificance isin it? In TFF it means that the BEP structure found in a general form should be coi-
rected in the following way. The subparticles in the second and third subspaces represent the
mass-dipole (according to the apt name given by Honl [21 ] who was the first to investigate the si-
milar models ). [t is clear thatin a centrally-sylametric field the mass-dipole consisting of the
positive mass m, and the negative one m_would rotate around the common inertia center carried
beyond the bounds of the dipole arm in direction of the positive mass. Thus, m, will roiate along
the internal orbit and m_ along the external one. It is clear that the difference of the mentioned
above masses,i.e.m = Im_| — Im_| would be an object moving in 2 given force field. This is the

mass of the entire BEP if Im_i > Im_I. The question arises,which mass creates the field? It is
easy to understand that the field is created by the sum of the absolute values of the masses:

m,=1m_| +im_|.

Iflm, | + 1m_1>1m_| — im_| = mthen the problem of the motion of m in the field
of m_ can be considered as self-consistent and solved by means of the equations given above.

We now consider the following solution. Denoting the parameters corresponding to the orbit
of the motion of m_ (the external orbit) by index 1 and the orbit of the motion of m, (the internal
orbit) by index 2 we obtain from (5.109} for the mass-dipole:

- iZmY( Im, 1+ Im_1)

(1= 8p0) 2 (Btgg ~ "2

Considering that for the system of two circular currentsin SS (2 — 1): g&™ = (2 — g2)and
in 88 (3 I): g(o'r” = I,ﬁi” 12 4+ Iﬂ‘za’ 1%, and taking into account the generally known rela-
tion between ihe longitudinal and the transversal masses [66 ):

{mlfl + mf)]ﬁ o [(1 —mp’ }]-(hcrc itis taken into account that m,, is the imaginary mass), we
1

have for the moment of the mass-dipole Im_ | — Im_| = m:

M= 2ty /e (1 - g (1 - 389 (1 - 3] .
And then

y=(1-8)(1-g)*{ - 33001”:‘7‘ , (5.110)

and the encrgy £ has a sharp minimum because g, << 1,
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22
E = mc .
1-3g,,

This fact characterizes the high level of the system stability.

The equations mentioned above are necessary and sufficient for the proof of the exisience of
this type of stable structures within the bounds of TFF. Yet, they donot give the possibility to cal-
culate all parameters of these structures.

However, if the conditions of non-radiation are put on the charges of the fundamental field
together with the conditions obtained from the solution of TL equatioa (5.53), then the possibility
appears tocalcnlate all the BEP parameters and then, by taking into account the quark structures,
the parameters of EPs as well (see subsection 5.7 and part [V).

Here we shall restrict ourselves o an approximate calculation because the transition to the ac-
curate calculation (up to the tenth significant digit) is not yet ready. On this stage of the calcula-
tion we consider only the following: for two masses (positive and negative) in the tardyor space
(the velocity is below that of light) the time component of the metric tensor is determined by the
velocity of the linear motion of the external charge B, and tke internal one B, so:

8o = B} - B3 -
Then from (5.110)

v= (- B[1 - 6 - 8] 1 - 36 - 83)] " 2.

Itisevident that for the first subspace, where only the differences of masses and chargesof tiie
fundamental field reveal, in the limit transition to interactions observable in the Euclidian space,
we should obtain the interaction which we call now electromagnetic:

ahc 2 g2
F R

Strictly speaking, this relation should be universal for all the types of interactions differing by
the unambiguous connection between a and . Yet, here under the preliminary approximate cor.-
sideration we restrict ourselves only to the electromagnetic component of interaction of the fun-
damental field.

Thus, for the self-consistent theory the following equality should take place:

m
a=y—.

he



Substituting the obtained expression for y and the proton numerical values (see section 19)
for B, and g, we have:

o, = wfl - (@ - pgj]”‘ [t - 38 - pﬁ}]"u 5 pf),‘f; - 7.26730. 103,

i.e.itis equal to .

Such striking coincidence of the theoretizal and experimental values of the dimensionless
constant o iestifies to the model described here.

To make the next step in clearing up the structure of any BEP it is necessary to examine in
detail the properties of EPVs and the physical vacuum created by them.

In TFF the particle of the vacuum means to be a system originated under the annihilation of
the particle and antiparticle in the first subspace. Such EPV forms a system whose mass is equal
to zero and which dnes not create any forces in space except the internal tensions in vacuum. EPVs
filling the first subspace with the concentration

|

My = —3——
v 23
LEa

are responsible for spreading the signal disturbing these particles. From the EPV structure it
is clear that the signal should spread with the velocity corresponding to the speed of propagation
of the transversal waves of the shear deformation in the infinite medium:

U{\:] =¥ GfD ’
where the shear modulus is

"Il'.l2

Gime
32’ Ry,

pis the density of particlzs in vacuum.
Substituting the corresponding values we obtain:

() _
v =cC.

Thus, for EPV< the theory shows that in the vacuum originated by these particles the signal
velocity (“the speed of light”) and the disturbance velocity of EPVs with the mentioned structure
arc the same

3o, in TFF Ihe foliowing notions acquire a clear physical meaning:
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a) the negative masses considered as the manifestation of negative inertia forces of one par-
ticle from a pair of strongly interacting particles. The separation of independently existing sub-
particies with the negative mass is impossible;

b) the imaginary masses in the second subspace equal to the sum of absolute values of the po-
sitive and negative masses, which contribute essentially to the formation of the chronogeometri-
cal properties of the space but influence the inertial properties of the system as the difference of
absolute values. 1 is clear that the imaginary masses are noi observabie as such;

c) the “longitudinal” and “transversal” masses, the difference of which is connected with the
existence of negative and imaginary masses. The “longitudinal” masses, as the inartia measure
of EPsand EPVsand, all the more, of objects originated by them, cannot reveal in the laboratory
subspace;

d) the objects moving with the velocity above that of light (tachyons), i.e. the elementary par-
ticles of the third subspace. Tachyons cannot reveal in any experiments connected with EPs and
EPVsof the first and second subspaces, moreover, in the experinients with the compound objects
which are situated cnly in the first subspace.

To be convinced of the viability of the considered structure for BEP, it is necessary 10 show
that BEP can exist as a stable formation in a free state.

Since the sources of the fundamental field originate from the charges we have to show that
they clo not radiate. PV consists of EPVs which are BEPs and anti-BEPs. Therefore, according to
TFF. radiation spreads through PV as the process of the signal propagation in the medium con-
sisting of EPVs. We have just affirmed it by showing the physical meaning of the speed of light.
We now consider the conditions which should be put on the subparticles structure in the second
subspace to make these subparticles move along the circumferences and surely form a mechani-
cally stable system but prevent them from radiating the energy. This requirement concerns the
model of the mapping of the second subspace onto the firstone, i.e. 88 (2 — ).

It is known that no combination of stationary charges can be stable. The Irnshow theorem de-
mands it [109, 113].

D. Bohm and M. Weinstein (114 ]using M. A. Markov's idea [115 ) made an attempt to find
such asystem of charges which would retain stability while oscillating in a small volume with velo-
cities substantially Iess than that oflight. The result obtained caused the discussion which ended,
according to our opinion, in a sufficient!y convincing proof [116, 117 | of the impossibility of the
existence of such stable systems.

The only possibility left, which is not vet cempletely discussed, is a systetn of charges oscil-
lating in a small volume with velocities near to that of light.

The behaviour of the ultrarclativistic rotator was investigated by D. D. Ivanenkoand A. A. Sc-
kolov [118 Jand other authors [119—121 |. Yel, the possibility of the existence of the systems of
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charges which under these cirumstances do not radiate is not proved, according te our informa-
tion, if we do not take into account the trivial case of circular currents which do not radiate.

We analvze the radiation of the ultrarelativistic rotator (118 ]. In this case the radiation forms
the spectrum of frequencies, so 1t is impossibie to restrict the discussion to the firsi or some of the

first harmenics. We recopsider the results obtained in [118 ]. The Fourier components of the vec-
tor potential in a most general way can be expressed as:

+ %0 —fﬂ(wf—“m:‘—w+£)” g . ;
A= w_qr 2;::: 2 Iu_e:(:w—uﬂsnrﬂmm)du_ (5.1'7
e -k

where o = w! — ¢ + 3'5 i nis the number of harmonic; B = v/ ¢ ; 8is the angle of the radius-

vector inclination with respect to the rotation axis: r is the radius-vector from the center. In the

spherical coordinates for projections of the vector-potential we have:

n
Ayln) = 2itc£sinu . g i(na = nf sin@ sina} y, 5.113
a - . .
Agln) = — 322 cost [ cosq - ¢ i~ WP Einbsine) g (5.114)
-n

Passing to the notations adopted in the cylindric functions theory and taking into considera-
tion that according to [122]:

b4
J(n B sing) = 5 [ ¢ f(n = B sinbsina) 4, . (5.115)
-n
ﬂfm J(nBsing) = J, (n@sin6) + J,_ (n 8 sing), (5.116)
we obtain:
e .
Ay(n) = 140 (n B sing) ; (5.117
Agln) = - ffmge,*,, (n B sin®} . (5.118)

Then for the projections of the vector of the eiectric and magnetic fields we have:

(=]

i}l’rrle _ 248
r

> £ (n B sin@) cosny ; (5.119

n=|

S & =1
”"’ - F‘V’ roar R

o g2 Hrdg 2uft < T
o = Ep= = - el Zln g, (rn 3 sin) sinsey (5.120)
n=
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whercy = wt — — — ¢ + 3 Thcnthcradlalcomponcmof the Pointing vector is

o, ﬁ(h’ + HE) = Ef—ﬁ—— [c!gzﬂi (n B sing) + p212(n Bsiuﬂ)] : (5.121)
The intensity of the radiation of any given narmonic has the follewing form:
I o =
Gy = CELC [ctg?9 1 2 (n p sing) + B2 J2(n B sing)] . (5.122)
2= R* 5

Transition from the rotator to a series of charges uniformly moving along the circumferences
1s made by m=ans of the “coherence factor” [118 ]

Sy = (- |)NEEE (5.123)

Jan

==
N
where N is the number of the uniformly situated charges. The general intensity of radiation of N
charges on the n-th harmonic is
Gy =8yG,. (5.124)
Now using the results obtained in [118 | we approach the solution of our probleni.

We find the serial number of the harmonic, radiating maximum under a certain angle 8 with
respect to the axis of the rotation. [t is evident that this maximum can be found from the equation
a6,y
— = 0. 5.12

dbl s (5.125)

We fix nand differentiate the function with respect to 8 because by the definition
( - d lJu( 2]

Subsmuung the value of G, from (5.124) into (5.125) and takinginto account (5.122), differef-

,andinourcasez = n  sinfand ndetermines the order of the Bessel function.

tiating and making the simplest transforinations, we obtain:

2 Jalnpsind) | J(upBsind) cos2f
I, n 3 sind) up cindg nln B sinl) sing

(5.1260

Frem (5.126) by taking into account the recurrent relations for the Bessel functions [122 | we
have:

A (nfsind) e Jy(np sintl)
Bsind 7 afend) * B U RGBS

n=— 3 (3.127
1—ﬁ sin%8 + cos?0
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It is evident that this equation is valid for any pumber of the charges regularly situated along
the circumference because they should have the same radiation maximum under the given angle
6.

Mind that iu electrodynamics the radiation maximum of the first harmonic is directed under

the angle of the order (1 — p.z }"Q to the rotation plane. The harmonics next in turn have smaller
angles, and the critical harmonics (n = nﬂ} and the great ones are situated in the rotation plane.

Therefore, the harmonic giving the radiation maximum in the rotation plane, i.e. under cosg
=0, is of interest to us. in this case:

AL
I, (nf) 4o (nf)
ng = - " e Pas " . (5.128)
1-B
We have obtained the information on the number of subcharges moving on the circumference
but if their number is finite they wouid radiate all the same. Besides, it is difficult to provide the
stability of the charges situated only on one circumference.

A system of charges is non-radiating and stable if the charges are situated on two concentric
circumferences. Make sure of that.

Denote all the parameters of the charges situated on the external circumference by the index
1 and on the internal one by the index 2. In those cases when the relations are the same we would
use the index B.

We find the conditions when the radiation of the external charges may entirely compensate
the radiation of the infernal ones. It is 2vident that in this case in any point of the space the radia-
tion should be counterphased and have the same wave length and amplitude. It is clear that these
conditions have to be satisfied on all harmonics. Since we consider the radiation in the rotation
plana, enly those numbers of the harmonics which are greater or equal to the number determined
from (5.128) are of interest to us.

[tis easy to see that the mutual compensation of the radiation of the two considered systems
of thecharges on the harmonics, whose radiation isoutof the rotation plane, is impossible, becau-
seitisimpossible tosatisfy simultancously the conditions of counterphaseness, synchronism and
equidirectress. Indeed, iiis known [118 ] that the circular current does not radiate, i.e. when
N — oo ihere is no radiation. But if & is finite then the harmonics, for which n /N is the integer
and there is radiation on them, can always be found. Therefore, to compensate the radiation on
these harmonics it is necessary tosatisfy the condition of their equidirectness which for a series of
harmonics of two multirotators is satisficd only when the Pointing vector of all harmonics is situa-
ted in the rotation plane. Thus, the numbcer of the charges M has to satisfy the condition

N zny. (5.129)
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When N = ngthe system radiates juston the harmonic minimaliy allowed. IfN > np_}hcn the
radiation occurs on the harmonics divisible by ng. Consequently, in all cases we have to provide
mutual compensation of the radiation on the harmonics divisible by ng and to provide this com-
pensation on all harmonics the serial number of which exceeds the number of the multirotator
charges.

The condition of the synchronism for the harmonics ng in the case of mutual compensation of

the radiation of two systems of the charges situated on two concentric circumferences has a very
simple form:

A==, (5.130)
or
xR, 2xR

=X, (5.13D
Biny  Bpmy
from where
R, ﬁlﬂ
tamoid (5.132)
R, Bymy

Since the compensation occurs only on the harmonic ngand those whose number is divisible
by ng, then the condition (5.130) or (5.132) is valid for all these harmonics, because the same
factor appears in both parts of the equality (5.131) for other harmonics.

The condition of the counterphaseness is also the same for all harmonics:
R - R, =X\, (5.133)
where K is a certain integer.

In the case when the signs of the charges on both circumferences are the same (the “one-char-
ged" state) K/ 2in (5.133) should be instead of X.

From the condition (5.133) taking into consideration (5.132) we obtain:

n, B, _ 2n R
Rl—RIE-HK, {5.134)

or

B —nB,=27K. (5.135)
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This s the very condition for the systems not to radiate. The rotation velocities of the charges and
ihe numbers of the “critical” harmonics of both systems of charges determined from (5.128)

should satisfy this condition.

The amplitude condition entirely depends on the values of charges, therefore, it can be con-

sidered separately. It determines only the reiation of g, and ¢,.
According to (5.128)
I Fi
ﬂl Jrlll("'l'ﬂilf i F]_ I:l(n’ '81}
li("'l ﬁl* 1 J_l(l] 'ﬂl}
n, = .
1 1= ﬂf
and respectively,
P J a'z("'z B) " ! n;("l )
R mB) Ry T (B
2 = .3§ :
Then (5.135) can be written as follows:
Ja ('llﬂl) J‘,l\ W8y I ('l,ﬁ;} Iy {n,ﬂz)
12 (ﬂlﬂ) "' (”l.ﬁl) = Jg}("zﬂg} I ("15:] .
-8 B -4 &

To solve the equation (5.138) in an casier way we add such an evident relation 1o it:

n, - n, =K,

where K| is a certain integer.
Then together with (5.138) we have a system of two equations:

g [amby Lmp) | g
?l'.ltﬁﬂﬁ Bliu By 1=

B r’u'l(“:l’l}+ A CY-H) B
1—;’; Ja,(mAy) ﬁs"élf"lﬂn) |—g:
or

Jrni(";ﬂg) .z("-;ﬁzj
‘n (P ﬂ'J a2 )

=2xnK;

1i (B (1)
.,('-zﬂzl n’: (mB)

a—-n,=K,

np —npB,=2uK.

(5.136)

(5.137)

(5.138)

(5.139)

(5.140)

(5.141)



Tosclve asystem of equations (5.140) we have to use some approximation for the Bessel func-
tions. In literature there are different representations of the Bessel fFunciions, mainly in the form
of infinite series and integrals. To use these representzations for the solution of the equations
(5.140) is rather difficult, ever if we derive the algorithm fitting in principle for the calculation by
the compnter on the basis of the obtained relations.

Therefore, for the Bessel functions with the integer parameter of the kind 7, (n p) under the

great values of n we could not manage to use their known representatiens. In this connection we
make an attempi to find a new representation of these functions which yieided an interesting re-
sult. In the theory of the Bessel functions there are the recurrentrelations [122  which determine
the exact relations between them. Therefore, we naturally tried to rest mainiy upon them.

Further on we shall use the recurrent formulae:

2z) = 22 0,(2) = T &) = Tple) s (5.142)

Jamilz) + Jplz) = 20,6), (5.143)
and the corsequences from them:

Ldg(z) = dy(2) - r4e); (5.144)

Lrz) =2002) = Tofe)s (5.145)

[;%m (" Tp(z)) = 7T piz) 5 (5.146)

I_p(z) = (- D" (2), (5.147)

where n is a natural number.

Weshould keepinmind [122 ] that the function J, (n B) is a series consisting of the roots of the
Bessel 2quation:

1, 1
fnp) = - ;‘—Elﬂ{n B) = (l - F) J(np). (5.148)
From (5.144) it directly follows that:

LB Iy h)

I.(nfy I, (np) — B (5.149)
and from the equation (5.143):

LGB 1,08

LB I mp "B (5.150)
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Introduce the nctation:

k = I, (nf) _Jn—i("m
N Y RN TY I

ork. = _J.:.m

LT AN TN

Itis easy to see that

(5.151)

(5.152)

Under very great nthe valve &, is the slowly and monotenously changing function of n (or B),

the value k, being nsar 1o one.

From (5.151) it follows that

Jha 0B I (nP)
I mB Tk nB)’

and then the equation (5.150) can be wriiten in the form:

‘!n-l("m I (nf) _2
Lep TR B B

from where

J _(nf) 2 "
n-1 L i 1 - i‘
B gl (-8) |

From (5.158) and (5.14%) we have

pacs [l-gi)"’

Jp (nB)

Consequently, if k, — ﬁ—‘zihcn

Iun B I (=B A

— 0 _ a2
Lap - -7 =0

To make further calculations more suitable we represent (5.156) in the form:
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(3.156)



I (nf)

2
BW =mg (1 - p°)7*, (5.157)
where mgas well a5 &, is a certain function of B (or n ). As it is clear from (5.156) and {5.157),
l2
-£

By taking into account (5.157) we can write (5.128) in the form:

L) I
my (1 - B%) " -

1-g -

ng =
or

1+ mi(1-8%
gl 2 il e
g . (5.159)
P ma-2

and consequently,

lim iy = 2 - 1 . 5.160)
1 P ma-p7 - ‘

Thus, under sufficiently great p:
g =0 f—L]. (5.161)
s l(r -7 ]

So, it is possible to get an idea of the character of the dependence of ngon B and of tlie value
ng , even when we have no solution for ng in an apparent way (the function m 8 is not yetrepresen-

ted in an apparent way even approximately).

The number of the harmonic under which the ultrarelativistic rolator radiates the enargy ma-
ximum is found in the paper of D.D. Ivanenko aud A.A. Sokolov [118 ]. They express the number
of the harmonic by the approximate formula:

3

= mﬁ A (3.162)

Ay

As we sce, the numbers nﬁnf the harmonics corresponding to the radiation maximum in the
rotation plane and the numbers of harmonics corresponding to the radiation maximum without

pointing out the direction of this optimal radiation have the same order. If we suppose that both
maxima coincide exactly,then (5.159) and (5.162) have to coincide too.
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D. D. Ivanenko and A. A. Sokolov in their calculations have used an approximation the error
of which kas not yet been determined [122 1. Besides, in a series of the intermadiate calculations
th=y neglected the termsof theorder (I — 32 ) . Taking into 2ccount the srrors meationed above,
the coincidence of (5.160) and (5.162) should be recognized as a good one. Yet, it is left unclear
whether ng and n; coincide exactly.

For our purposes the approximate expressions for ng in the form of (5.160) and (5.161) are
not enough. Therefore, itis necessary to find the expression for mg (or k,) in an apparent way.

It fellows directly from (5.155) that

Ja-1(nB) ﬁ 2
m—— =14+ (l- . (5.163)
N =)
- .y an Tnr (1 ﬁ) 'ﬁ)
Expressingin {5.163) T B via ; ( ) — according to (5.153), for the function of the order
(11 + 1) we obtain the expression analogous to (5.157):
Jogr (25
"}I‘—(m =] - m;& ([ - Bz}yz . (5.164)

To find the unkncwn expession for mgwe first find the ratio of derivatives of the Bessel func-

tions io the function itself for the functious whose order differs from r by one. From (5.144) we
have:

Tneiln B) = I a(n B) = "o (B (5.165)
ar

T B) (B
s @B = TeB " B

But from (5.143) 1t also follows that

(1— —) . (5.166)

(nf) , I (npB)
n 2
1- -t 167
Ja-1(mP) H ( I () @ )
Then the equation (5.166) after the elementary transformation can be written as follows:
i l(nﬁ) I (rlﬁ)

Ty (B 3("‘) ,,{m (5.168)

We introduce the notation:



Ino1 (1)

wie= (B
and express all unknown values via i, § and n. Then (5.168) takes the form:
LBy

T (nB) =3(1—:l:)_£'

We find the similar expressions for the function of the order n + 1 from (5.149):

‘!n'+i (18) o

J, (nB)
AT 1 R fobrait
J;;+|("‘ﬁ) B (l+ '")+ '*n-l—l (”ﬁ)

Using (5.169) we reduce (5.150) to the following form:
Iy (n ) i

Tys1 By 2

B'_Il

Then according 1o (5.172), the relation (5.171) can be written as follows:

Tisr B I I
o meet fl B

Similariy for the function of the order n we have:

L)
J"(uﬂ) e F '

Besides, directly from (5.142) and (5.143) we have:
24, (nf) _ Jp-1 (nf J'ﬂ_!_](nﬂ}

I, (nB) Ip(nB) 1, (nB)
and

Tyt By Ly (B) 4
aph Y TImp "B

Then from (5.173) and (5.176) we obtain:

Jymp) dy B
I,mp) T r,mp B

and further on taking into account (5.169) and (5.157):

2,112
Ly | mg( =A%)
g S4BT B '

(5.169)

(5.170)

(5.171)

(5.172)

(5.173)

(5.174)

(5.175)

(5.176)

[GR N

5.178)
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from where

1
1 1-
u =l‘f’iﬁi‘ (5.179)

Taking into account (5.179) it is easy to transform (5.173) and {5.170):

_g2l2
£i : _ﬂz,lxz O Ul 0
net (0F) _ my( : w BT (5.180)
Iner (2B B 1 - mg(1 ~ghlz uh
2,12
{ (ot 0}
Lio B mga=gH s SR
Jn—l("m P l+mﬂ{l —ﬂzjm L
For the comparison it is suitable to remind the reader that
' 2
AL ol (5.182)
1, (n By B ’ A
Besides, for the functions whose order differs by one we have:
1 (nf) I—mﬁ(luﬁz)
n+1 ST i
Y B ; (5.183)
Ii (B) 1+ mg0 -gh
I, (mB) = B 4 (5.184)

In these equations the Bessel functions on the argument of the order nand n = 1 are directly ex-
pressed via n, B and myg. The latter is a certain function of g (orn ).

Using (5.178) and (5.180)—(5.184) we form the sums and differences of the ratios of the de-
rivatives to their functions: .

Iig ) T B 2mgB -

T 6B * T ) T T ma(1 - 6% ! o
Lisi OB L @B 20 -BYeE- 1) (5.186)
Tnp1 (B Iy (nB) g [1 - mz{l _31]] : ‘
Lap) i B -ﬁz)("*.%- 1 sukn (5.187)
Tonfy I, (np) B [I + mg (1 v_ﬁi}l.fz] ng’ ?



Lis B LB 0-BHef-n (5.188)
g (0B} I (np) B [I ™ ""',8(1 _ﬁz)y;] nf " .

From the equations (5.187) and (5.188) it foilows that under the great #, and p approaching
the unit, when the order of the function changes by one, the ratio of the derivative to the function
itself changes by the value of the order

s (nf) Jp(nB) 2
Tna1 B Ty - 00 =BT,

because under the great B the value m is approximately equal to 212404 n(l— 92}>1. The
changeof the order by (+1) resultsin theincrease, and by (=1) resalts in the decrease of this func-
ticn by the values which coincide by the absolutz value with the accuracy up to the terms

oq - ﬂ.2 }.'!rz and 1 / np. Indeed, substracting (5.188) from (3.187) we have:

@B LA At i @B _2mgeng-1Q o 2 b 2 5.159)
In—y (nB) Iy, (nf) In(nf) Ine1 (26) B Bl - ru§ (1 —_1‘11}} ng- '
Under g = 1 (5.189) has the order of difference
r1 o adhd2 _ 2
o[a-%-%]. (5.190)

Therefore, under the great values of n and small values of (1 — 2 ) itis possible in a good ap-
proximation to use the interpolation:

JJ‘| (nB) “ 1 Ju'q-[ (nf) g J’,,'_.|('l5}
1.0B = 2T B T Tk |

(5.191)

The term we neglect has the order of (35.190).

By means of (5.191) itis possible to obtain the value mg and together with it all the necessary

expressions. Taking into account (5.182) and (5.185) itis possible to represent (5.191) in the
form:

2mg (1 —,82)"0':211135{[ g

|_,,.5(|_52) ~B" (5.192)
or
mg (I - [;‘.2 )1/2 {I -mﬁ(l -ﬂz) 'ﬂz _ mg(1 —ﬁz)h(l —mg) _ l‘
1= - Y L=mgl - % "



from where

t—mel -8
ng = -——”'E( Lh (5.193)
mg (m3 = 1) (1 - 8%

It is easy to see that (5.193} means that the right-hand side of (5.189) is equal to zero. Con-
sequentiy, the found dependence corresponds to the exact but not to the approximate satisfaction
cf the condition (5.191).

For the number of the unknown harmonic the expression (5.159) has been already found.

Comparing (5.193} and (5.159) we have:

L+ mE(l - p?) = : "ﬂm. (5.194)

ms =1
or
(1 - 8%)m§+ms—2=0,
from where
_ =\H+s(l-,er‘}-_1
201 - gy ’
Since my is the real number we refain only the sign “+" before the root. Se,

m} = Vivsa-g) -1 (5.196)
20 -89

In the limitwhen § — 1

(5.195)

‘laf-‘

mm? =2, (5.197
fo1 P

From (3.194) and (5.159) we can obtain one more important relation. We rewrite (5.159) in
the form:

ng = nLa‘, +mg(l - p2)|:(1 - gH¥2, (5.198)
and represent (5.194) in the form:
;"‘; +mg(l - pY = é (5.199)

Then from (5.198) it follows that
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k
- B (5.200)
ng = 3 B
: (-

where kﬁ = 355 is a certain monotonous and slowly changing function.
8
From (5.198), taking into account (5.196), we can derive directly the following expression:

. __2Pa=gh”
Wi+sg -5 -11%2

and consequently,

kg (5.201)

PhL

g = —
B Wissa-f5-11%2

The formulae (5.202) and (5.201) can be represented in another form, more suitable for the
calculation:

(5.202)

n
ng = [n+vi+ Sclﬁ;: i! : (5.203)
a1 -ph
vi+ad- £
% = [n+vi+ 84(1 .Ezi 1 : (5.204)

It is easy to see that (5.202) and (5.203) are identical.

From (5.204) it follows that under B =0 we have kg = 2,and under § = 1 wehave
kg = 27'2, The point n = (1 — p}) "2 under kg =1 is a boundary one for the conditions
kﬁ<l and k§>1 , and we have to consider either the case n<{l — Bz}_a’?, or

n>(l - ;32}-3’2. Since we are interested in the ultrarelativistic case, we choose the upper

domain when k max = 1, from where

= 09144725

L2
8 = 330 _ 3% |
min — [

Now we can represent the system of equations (5.140) in the form:
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K.

I 1 1 i
£ -——

Vi+8Q -;35 -1 i<sa -.s%; 132 S

P _ ) _2nK
Vi+s(-pp-1i°2 Vissa-gn-11°2 2

Before the consideration of the methods of solution of this system we determine the accuracy
which could be provided by such solution. The equation (5.193) obtained from the recurrent re-
lations for the Bessel functions under the only supposition given in (5.191) and the exact expres-
sion (5.159) foran unknown harmonic, turned out to be compatible algebraically and gave a
common solution in the form (5.205). The probability of this coincidence being random is very
small. Therefore, it is of interest toclear up whether this coincidence shows that in 2 particular ca-
se, when the order of the Bessel function is determined by (5.159), the dependence (5.191) isva-
lid not approximately but exactly.

(5.205)

When solving (5.194), we restricted the solution 1o the real domain. By the way, it is easy to
see that the equations

sy PRI w
? mg (mF = 1) (1 - 2’
and
1+n!§{l—ﬁ2) i
ng = (I
B mg 1 PR
are compatible in the real domain of the values mg not for all g.
Tofind By, under which mgis real we write () in the following form
2 a2 )
- 1 = [";gﬂ = (5.206)
mg (1 - B -1
n mzﬁz
As ng>0 and mg(1 - B9)*?>0, then it should be |[—2— — 1| >0 , from where
g = 1
pe> (1 - Lz) .Taking into account (I1) we have V1 + 8 (I — p%) <3 ,i.e.p >0 .Thereareno
m
B
other restrictions.
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Thus, (1) and (II) are compatible in the whole real domain of the values of g > 0, and in the
point B = 0 there is a singularity. This shows that (5.193) and consequently (5.191) strictiy
coincide in the domain of the values 0 < B < 1, provided (5.159) is valid.

Nowwhen we know the domain of the applicability and the accuracy of the system of the equa-
tions (5.205) we can begin to solve it.

At first we determine the number of possible solutions of the system in relation te B, and
B, within the interval
0914<p,<p, = 1. (5.207)

1t can be shown that within this interval the sysiem has the unique solution. Indecd, we represent
the system (5.205) in the following form:

I'F, = * . i e =2, {5.208)
[\‘1+3(1—?)—:] [\fusn-F -1]

I F, = . - =1 % =0, (5.269)
[\rl_+—8(l—1‘)—lJ [VIIAI-B(!—__\’:;—!]

and find its solution wiihin the domain (5.207).

We consider (I') and (11') as the equations of two families of the curvesin the szme domain un-
der different values of the parameters a and b. Our proposition will be proved if we show that in
any point of the given domair the derivative dy,. / dxdetermined for the family I' would always

be greater (or less) than that for the family [1' of the curves of the considered system of equations.
We find the ratio of the derivatives:

dy dyp 9+ 4l -Viss-2h) _9-.-4,-’-\?|+s(1-—?]

dx " Jx z ¥
Analysing the function f () (xor y ) we obtain:

9+ 42 -Vi+au-p)
;] 5

£ =
(5.210

IO = g

Itis easy tosee thatwithin the whele considered interval (5.207) £(p) > 0 ,i.e.f (8) monotonously
increases. Since x> ythen f (x ) > f (v ) . The function f (y ) also monotoncusly increases because

ithas the sameformasf (x ) . Consequently, LIS lnrdy[ [dx > dyy /dxin (he entire conside-

0]
v
red domain of the values xand y. That wis demanded io be proved. Thus, in the domain, interesi-
ing for us, the system of the equations (5.205} has the only selution,
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Tofind it, we determine the approximate values of n, and n, by expanding the expression un-
der the root in: (5.203) into a series and taking ihe first two terms of this expansion:

_ [I'+‘s"|+a(l-r')]” p+4(1—xz)]

n
l 14.3:1_413[?_ il 1 -‘1-12) G2ty
:"*u—x’)"z z“z(:—x‘)‘@ 1‘3(1ux‘)’4
= (- y:,h M- yz)ﬁ : (5.212)
Then the system of the equations
'ril -, =K,
|xn, — yr, = 2uK (5.213
in a certain approximation takes the form:
1 1] 1 1
- 3 - V2K,
[[(lvx’f" a-m " [(1 -A" q —y’)“’] S
] ] (5.214)
X - ——L 3 |[—5p-—1L| = V2 K.
[(l—x’)” (i-f)”] ™ [(I R e "
Sclving tiis sysiem we obtain:
(1 - )%= 2 (5.215)
2 26 23K, 2 21K
—_— -2 ==Y+ +1fx -
[30_1%&) M) ] {t 1}
IS
(1-y)*= u’ e (5.216)
2 26 K
[;__%T) ﬂf(l—-—) +1] —\le(l--z}

By substituting ihe values (1 — »?) and (1 - y*) into (5.211) and (5.212) we can calculate the ap-
proximaie values of a, and n,.

Sc, the values of the principal internal parameters of the system, i.¢. the velocities B, and B, ,
the numbers of the critical harmonics n, and n,, the value R, / R, and the ratio of the distance
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R -
between the circular currents / o the mdiusk—'[ - —1R—R3 =1 - %‘- , are the unambiguous functions
1 1 1

of the integer parameters K and K, . As to the parameters, we know only that they are integers and
should satisfy the considered system of the equations.

From (5.215) and (5.216) it is seen that within the interval
0914<y<x<l (5.217)

the condition of the uniqueness of yand x under the given K and K| requires also the unambiguous
connection between both parameters X and K. Really, ifa certain integer K| is given then the va-
lue K cannot be varied because under the change of K even by one, when K, is fixed, either the
condition (5.217) or the unambiguity condition of the solution under the given values of the pa-
rameters is violated.

Thus, there is an unambiguous connection between the parameters Kand K. The given value
of X, corresponds to the only value K.

The physical significance of this mathematical conclusion is rather obvious. The parameter
K is the function of the critical numbers of the harmonics (K, = n, - n,), and K is the number of
wave lengths (the same for both harmonics), placed within the range of R, — K,. Itis clear that if
the difference between the numbers of the harmonics with the same wave-length is known, it
means that the distance between the radii R, — R, is fixed and different numbers of the wave-
lengths created by both systems of charges in no way can be placed within the same interval. Con-
sequently, K = (R, — R,) /Aunder the given K, should have the only value. So, the

determination of the integer parameters K and X, ic reduced to the determinaticn of one of them.

To find all possible solutions of the system (5.213), as the possibie values of the parameter K,
we may consider a series of natural numbers, beginning from one. Such method surely gives the
right result, but it is very labour-consuming even with the use of a computer. Yet, there is a pos-
sibility of a sharp decrease of the number of the considered values X, if we pay attention to the faci
thatunder g — 1

K
=1 ——i
X " l 27 . (5.218)

The nearer B is to the unit, the more accurate satisfaction of the condition (5.218) occurs.

Itis easy tosee that not all pairs of the numbers but strictly definite ones satisfy the condition
(5.218). For example, if X=7 then only under K, = 44 the condition (5.218) is satisfied in the best
way. By simple substitution it is casy to see that the values of X from 1 to 6 inclusively do not give
any solution of (5.205) at all because for them it is impossible to find such an integer K| under
which the condition (5.218) is satisfied. At the same time the values Kand K| divisible by 7 and 44
respectively, e.g. 14 and 88; 21 and 132, eic. give the solution. Yet, with the increase of the ab-
solute value of K, under its certain maximal value, there is no solution either. The last value of K,
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which in the above-mentioned series of the numbers divisible by 7 gives the solution of the system
in the real domain, isequal to K, =7-112 =784,

Thuis, the values K=7 and K =44 and the numbers divisible by them, form a certain series of
possible solutions of the system of equations.

From (5.215) and (5.216) it is also easy to see that under the constant X, /2=K , greater va-
ives x and smaller values yhave to correspond to greater values K. If the ratio K, /2xK changes,

thea it is necessary for K, /K ,in the subsequent case, to be nearer to Zx than in the previous one,
to obtain greater value of ratio K, /27K .

By taking into account the unambiguity of the solution proved previously and the evident mo-
notory of x and y dependence on K, it foliows directiy that the subsequent series of the numbers
of K and K|, which can give the solution of the system, has to be formed by another pair of the in-
tegers satisfying the following condition:

K 1

[[x > 2 Rt (5.219)
After 44/7 only the pairo\f the numbers 710/113 and numbers divisible by them satisfy this

condition. Indeed, 1 — 257 = 4.02... 10, and 1 - 2—"-‘-1 = 8.49...10°%. Between K =7

(K;=44) and K=113 (K, = 7!0) there are no pairs of nu-bcrs satisfying (5.219) better than 113
and 710. These numbers constitute another finite series of the numbers divisible by them, whick
gives the solutions of (3.213).

Thus, the determination of the numbers giving the solutions of the system of equations is re-
duced to the determination of the pair of the integers whose ratios satisfy the relations (5.218)
and (5.219) in the best way. These conditions should be satisfied under the smallest value K.
This rule, by means of not difficnlt modes, gave the possibility to find the values of the pairs of the
integers which might be used as the parameters corresponding to the solution of the system of
equations. The first values of the parameters X and K, for nine series of the particles, which may
in principle exist in the basic and virtual states, are given in table 5.1.

Thus, we have obtained a rather noteworthy result, according te which only 2 discrete series
of states, characterized by certain pairs of velocities of the charges rotation, satisfies the phase
and frequency conditions of non-radiating.

Itis cssential to note that not only the rotation velocities but the numbers of harmonrics and the

ratios of the radii corresponding to them are discrete, because it follows from (5.131) and (5.134)
that

116



_ K 1 .
%_I_HH:H__E, (5.2200
by

and both n, and n, are determined unambiguously from (5.141) via f, and g,.

Table 5.
" Xp Kp A=1 '1;15
. 7 44 4023-1074
2 112 710 8.491-i0"%
3 33 215 208 595 L056-10~10
4 99 532 625 378 9277:10"12
5 364 913 2 292 816 5.027-m°19
6 1 725 033 i0 838 702 7049167
7 131 002 976 E23 115 974 6.164-10718
g 811 528 438 5 098 983 558 1755079
136 876 735 467 187 340 BEO 0Z1 893 182 138 486 2.756-107%

It is easy to see that the number of the terms in every series cannot exceed the valve which is
numerically equal to the first value K in the subsequent series. Indeed, if we suppose, for examp'le,
that in the first series of the possible values of K thereis a term the number of which is 113 then its
Kis equal to 113.7 =791, But K in the seventh term of the second series will be fust the same.

As it has been shown, the equations cf the electrodynamical stability have only one solution
and 112 terms should be in the first series. But the 113th term may characterize only a certain me-
tastable state, corresponding to the transition from the first series of the possible states to the 5e-
cond one.

Therefore, the number of the last term in every series of the constants, determining all the po-
ssible states of EPs, isdefi . ° by such simpie equality:

Npox (NS) = K, (NS + 1), (5.221)

where NS is the number of the series.
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5.7.

The sixth step. Quark structures in TFF*’

As it was noted, physical vacuum has a great concentration of EPVs. For example, in 1 ¢® of
free PY there areapprox 10* elementary particles of the proton-antiproton vacuum. The elemen-
tary particles cannot exist in PV in the “bare” state. Together with EPVs they form systems
which in TFF arecalled the quark struciures (QS). Asitis clear from the discussed below, QSs ha-
ve practically all properties of ordinary quarks. QSs in TFF have some advantages and none of the

known drawbacks and difficulties peculiar to the “ordinary™ quarks.

In TFF EP-quarks and EPV-quarks are the elements of the quark structures originated from
BEPs and EPVs under their joininginto the quark structures. The analysis of all possible QSs
shows that only the structures given in table 5.2 are stable.

Tabie 5.2
; Objects 10 be " Composition of QS
Diagram  number uni}::d in QS QS diagram orming  EP Q
nyn
1 IBEP + 2EPVs .;+ " IEP-q+2EPV-q
n n
e +
1 L}
2 2 BEPs+ IEPY iy 2EP-q+ IEPY-q
+
£
IBEP + |EPY + e
3 + surrounding PV vidig IEP-g+ J EPY-g
| i

i I
Conventional symbols in diagrams: t is EP-quark; + is double EP-quark

-~
the second case EPY is greally exciled and BEP enters inside EPY siructure); /

"o

L1, '
Thip L

are EPY-quarks {in

\w. issurroundicg PV as
!

QS element, (Sigr at the arow end shows electric charge sign of QS element ). > _ =

The process of QSs formation is completely determined by the structural features of BEPsand
LPVs which become quarks.

*} Suksection 5.7 was prepared o poblication jointly with 1, D, Dvas.
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The structural features of BEP are schematically given in table 5.3. We decipher them. The
structure of BEP in SS (2 — 1) is shown in the form of the point charges of the fundamental field
situated in the plane perpendicular to the scheme plane. Thus, cach pair of the charges situated
on the same diameter corresponds 1o n subparticles situated on the circumfererce (see subsec-

tion 5.5 ). In this case itis of no importance how numerous the subparticles are and we speak about
one total charge.

Table 5.3
NS
A 1 l 2 3
|
hadrons leplons
+ = | " _a
- I + = l + - i
1 — 4 >0y T4 %42 — 41 %97
- + . + =
+ = oy -
#° l + * L S l
—— > n —a’e TTTure
+° +*° pe
e =% - %
it }‘ + . 1 + » l
3 17 St TR 41 S (Rl
- + - + -
+» - -0
=g £ |
+° l +° l +° 4
4 Sl TR ) S TRl ey a >4,
S +* : e
- - -

Thesigns of ihe external charge ¢, and the internal one g, are placed to the left from them. In
85 (2 — 1) the symmetry of the FF charges (which exist in 285 when ¢, = ¢, ) is disturbed, and
the difference of the FF charges, i.e. the electric charge, appears. The points showing the charges
are blacked just there where the greater charge is situated. The dominating charge can be situated
on the external circumiference as well as on the internal onz of the siructure. just this fact deter-
mines the notions “particle” and “double-particle” used in TFF. Here we mean that for BEP
whose external (with respect to the center) charge of FF dominates in 83 (2 — 1) the term par-
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ticle is vsed, while using the term double-particle we mean BEP whose interna! charge of FF do-
minates.

The dipo'e arms are always considerably less than the radii. In the second series the radii are
about sixty times greater, and in the third series 1800 times greater than those in the firsi series.
In table 5.3 they are schematically shown equal.

Bzsides, the FF charges substantially ditfer from a series to a series by the velocities of the
riotion on the circumferences and by tne absolute values g, and ¢,. Yet, though g, and g, change
by many erders the difference between them (the electric charge) has practically the same value.
This fact was not explained earlier (see Part IV of the book).

The fact that BEPs correspond to different structural series determines the deep differencein
the character of interactions of EPs formed from them. This feature unobservable in our labora-
tory space but extremely essential for 288 (the scene of ail interactions) was guessed under for-
mation of the modern theory of quarks and was called the “colour”, as we have already
mentioned. To be concreie, we agree on calling the quarks formed from BEPs of the first series as
“red”, of the second series as “gre=n", of the third series as “blue” and on denoting them, res-
pactively. by numbers 1, 2, 3. Itis necessary to note thai the colour and p-even parity are unam-
biguously determined by the internal structure of BEPs oaly for the EP-quarks. The internal
structure of the EPV-quarks can not be umambiguously determined by these quantum numbers.

Though leptons have the colour indication, BEPs from the third series, preserving the proper-
ties peculiar to this series, do not form quark structures with EPVs. Yet, the particles with the pro-
perties of tne third series can change their structure {the meton effect (7 }) so that their properties
allow them to take part in formation of quark structures. Below we shall return to this question.

From Table 5.3 itis seen that the BEP struciure is determined only by two parameters: the se-
ries number NS and the particle state A. The series number d=termines the “colour™ and the par-
ticle state in a certain series determines the “flavor”. There are four basic flavors:

A=1 (corresponds to the flavor & ) ;
A =2 (corresnonds to the flavord ) ;
A= 3 (corresponds to the flavor s ) ,
A=4 {corresponds to the flavorc¢ ) .

Such subdivision is tree for ail thiee series. This symmeltry of the properties can he disturbed
and the dependenice of properties on the scries and the type of the quark (EP-gor EPV-q) canap-
pear.

in Taple 5.4 all possible quarks are given. The quarks with disturbed symmeltry which belong
te the first and second serics under A= | or A=2 are denoted now as f-quarks, and under A=3 or



A=4 are denoted now as b-quarks. [t is easy to see that the symmetry discussed hereis the SU(3)-
symmetry.

Table 5.4
NS I
A 1 2 I 3 sign A 4 Tqu
EP-q EPV-q EP-q EPV-q EP-q EPV-q
o r! u? 12 «h b
1 ! 0 | 2342 | 423
(H) ™) B) (M) f (L)
o — e —— —— —l  p—— "
40 d! 4@ & @ 433 9
2 i ! 0 173
Lan | oy | oo | an | | g
d |4 2 e |ey | o a3
3 T +1 +2/3
(H) M) (B) M) I (L)
_— ] == T T
RO I B ) 239
4 I* T -1 -1/3
[ N0 T W .. N .. ) I N

From S{/(3) - symmetry it follows that the amount of EP-quarks sheuld be 8, and of EPV-
quarks — 10. Since there are three indications of the colour then the flavor should have six va-
riants to have the total number of the quarks equal to 18. The name “flavor™ is not felicitous, yet,
to keep the succession we leave it as it is. We also leave the notation and the names of the flavors
and introduce the notion “quantum number of the flavor” 4:

u is the up quark (the quantum number of the flavor is equal to zero);

 is the down quark (the quantum number of the flavor is equal to zero);
s is the strange quark (the quantum number of the flavor is equal to— 1);
cis the charmed quark (the quantum number of the flavor is equal to +1);
tis the top quark {the quantum number of the flavor is equal to zero);

bis the beautiful quark (the quantum number of the flavor is equal to+1). Itis important tone-
tethatin TFF the indication of the flavor as well as that of the colour is determined by the internal
parameters of BEPs, according to table 5.3.
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In the theory of quarks formulated without taking into account TFF it is considered that ihe
quarks u, d, s, ¢, b, t substantially differ in the mass. The statement is almost generally acceptad
that the distinctly differing “light™ and “heavy” quarks do exisi. However, it directly contradicts
the experience. Indeed, the experiment shows that the “iight” quarks can form the heavy nuclei
and the “heavy” quarks — relatively light nuclei (Fig. 5.3).

m in MeV
log m

4.2 - Baryoens Mesons

4.0

=
o |

3.8 |-

36

34
32 r
30 |

2.8

o e,
[—ol ]

P pmm— ey

24

22

W
-
L]

2.0 u(d)

Fig 3.3 Mass range of EPs with verious Mavors.

In TFF this phenomenon has a natural explanation. The type of the quark is determined only
by the series number NS and state A of the quarks forming S. At the same time the mass of the
particle substantially depends on the point number NT under the same NS and A (for detail see
Part 1V). The same holds for the value of the particles spin. The spin is determined by #S§ and A
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as well as by NT. Therefore, the type of the quark cannot ir: principle completely determine the
mass and spin of the particle.

The process of fermation ot quarks structures is accompanisd by a certain mechanism of di-
vision of the electric charge of the “priming™ BEP between all elements of the quark structure, i.c.
BEP, EPV, PV. Consider this mechanism (table 5.5, the fifih table column).

Coming into interaction with EPV, BEP aivides its initial charge +1 or —1 into three equal
parts ( because there are three elements in the quark structure). BEP can give some part of its
charge either to two EPVs (in the structure ! BEP + 2EPVs), or to BEP and EPV (in the structure
2BEPs+1EPV), or to EPV and PV. The charge given to PV, which is the medium but not the con-
stant element of the quark struciure, cannot stay there. It has to pass either to EPV-q orto EP-q
which directly form the quark structure. In the quark structure with BEP charged positively the
PV charge passes to EP-quark and in the structure with the negatively charged BEP the PV char-
ge passes to EPV -quark. Comparing baryon and meson structural schemes we see that in the first
structural scheme BEP is replaced by PV and in the second one EPV is replaced by PV.

This process, according to the principle of its physical essence, is indissolubly connected with
the fundamenta! properties of the basic structures of matter discussed in sections 1 —4 and 7—16.
Here we speak about the electric charge (but not the fundamental one!). According to TFF, the
electric charge is the relativistic effect determined by the featurés of the subparticles motion and
by the laws of mapping from cne subspace onto another. It is clear that physical vacuum cannot be
the object in which the electric charge originates or is kept because PV as a whole does not take

partin the relativistic processes. FV can only reflect thecharge from oneobject bearing the charge
onto another.

We have already mentioned that in TFF the notions “particle” and “antiparticle” havean ab-
solutecharacter but not a relative one. The particles with the positive charge are fcrmed only fromi
the positively charged BEPshaving NS=1, 2and A=1, 3, and the particies with the negative char-
geare formed only from the negatively charged BEPshaving NS=1,2and A=2, 4 (seetable 5.3).
The antiparticles are formed from the corresponding anti-BEPs by ihe same structural schemes.
PV taking part in the discussed processes is the p*p™ and e’e” vacua. It is easy to see that for these
types of vacuum the positive electric charge can be reflected from PV only onto EP-quark and the
negative one only onto EPV-quark (for detail see sections 7and 16). This asymmeiry is oneof the
causes of violation of the law of conservation of the spatial even parity under weak interactions in-
separably linked with the processes under which the particles exchange the electric charge. The
same asymmetry is responsible for the fact that there is the structure 2EPV-q plus the negatively
charged EP-q and there is no structure 2EPV-q plus the positively charged EP-q.

Under certain conditions the process of mapping of the charge is added to the mechanism of
the charge division when BEP (if there arz two of them in the quark structure, then only one
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Table 5.5
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Table 5.5 continuation
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of them ) maps the chargs, equal to one and having the sign opposite to its initial charge, onto
EPV. In this case the charge of the EPV-quark is equal io the sum of the charges obtained by it
as the resul!t of division and mapping, i.e. if under division the EPV-quark cbtained the charge
+1/3 and, besides. BEP induced the charge —1 on it, then ihe total charge of EPV-quark would
beequal to (+1/3 - 1)=-2/3.

Thus, from one structural quark scheme two states (two EPs) can be obtained: the first EP,
the formation of which is accompanied only by division of the charge, and the second EP whose
formation is accompaniad by two simultaneously going processes -— division and mapping of the
charge from REP. Just this fact originates the charge difference of the similar particles constitu-
ting the isomultiplet.

Two particles obtained from one structural quark scheme form an isomultiplet of two par-
ticles. Yct, each separately taken particle can also form an independent isomultiplet consisting of
one particle. Besides the isomultiplets consisting of particles obtained according to one and the
same structural scheme, isomultiplets of pariicles can also be obtained according to different
structural schemes. For example, the isomultiplet can be constituted of three particle: the first
two particles obtained according to the structural scheme 2BEPs + 1EPV and the third one whose
formation process was accompanied by division with mapping. According to the structural quark
scneme !BEP + 2EPVs, the isomultiplet can also consist of three particles.

All passible quark structurcs of baryons are givenin table 5.6 and those of mesens - - in
table 5.7. The quark composition, the electric charge and thevalues /;/,; Y:Y-B are
shown in the tables. It is shown below how these quanium numbers are determincd for the quark
structures described in TFF.
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Table 5.5 continuation

9 0 11 12 13 14 15

no meson analogue to baryons

b

. l

From ihe definiticn of the isomaltiplet it follows that the particles constituting one isomulti-
plet should satisfy the following conditions:

I. The hypeircharge of all particles of an isomultiplet is the same.
2. The particles of an isomuliiplet shouid have the same quantum number of flavor.
3. Ali particles of an isomultiplet have the sane isotopic spin.

From tables 5.6 and 5.7 it is seen that these conditions hold. Now it is also demanded that the
particles constituting an isomultiplet should have the exact equality of their masses. According to
TFF (see sections 7 and 106}, the mass of a particle can deviate from the average stationary state
by the value 2 / w of the average mass. Therefore, the mass of particles constituting an isomul-
tiplet can differ by the value 2am_, /=, where m, is the average mass of particles constituting

this isomultiplet.

For the obtained in TFF quark isomultiplets the following quantum numbers can be determi-
ned directly from their structure and composition: the baryon (lepton) number B (L ); the isoto-
pic spin [; the projection of the isotopic spin /,; the hypercharge Y; the flavor and the colour. The
baryon number is obtained directly from the structural diagram. If there are two quarks in QS and
physical vacuum takes pari as a time-element of the structure then & = (), but if the number of the
quarks is odd then B = 1. The isotopic spin is determined by the known formula [ = N—;—!

where N is the number of the particles in the isomultiplet. The projection of the isotopic spin
is determined as follows: the value [I;=/ istaken for the particle with the greatest electric
charge, thevalue by one lessthan/, is taken for the subsequent particle (by thevalueof the
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Table 5.6

ons
Experimentally found Qs
1
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clectric charge) etc. The hypercharge Yis determined by the known formula ¥ = 2 (g — ;) for
cach particle of the isomultiplet.

The discussion of the features of the quark struciure in TFF will not be complete if we do not
mention why the meson structures, which consist of two quarks, divide the initial charge of BEP
notinto two parts but into three parts like the quarks structures consisting of three quarks. Thisis
due 10 the fact that meson structures also have three elements, though the third element is not a
scparate EPV but the physical vacuum associated with BEP. In this case the whole process of
transformation of the integer charge of BEP into fractional charges of the quarks is like that oc-
curring in the ten permitted baryons structures. Yet, since the quark structure itself consisis of
only two quarks,then one of them should take that part of the charge which physical vacuum tem-
porarily obtains in the process of origination of the quark structure.

It becomes possible only if the EPV-q in the meson structure is the anliquark and,
consequently, has the charge equal to-2/3or +1 /3. [tis necessary to note that the Pauli principle
and the relation between the spin and statistics are due to the mentioned above difference
beiween the meson and baryon quark structures. Indced, the meson quark structures have
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Table 5.6 eonunuaton

9 10 11 12 13 i4 15
1 1 z +1 5 =5 14
€
1 0 z +1 15
1 =1 2 + 16
1 1 0 =1 ; 17
2 T -reso-
nances 18
1 0 a =1
1 =1 0 =1 19
1/2 +1/2 1 0 P 20
N -reso-
nances
1/2 -1/2 1 0 n 21
|

no colour field (it is equal 1o zero) because they are formed from the quark and antiguark. In

contrast o it, the baryon quark structures have the colour. The colour ficld prokibils coexistence
of two identical quarks with the same guantum numbeis in one physical system. Tlus is
connected with the fact that in 2SS the FF is situaied in the fine string scanming over the cone
surface (seesections |—4and part [V of this book). Tounderstand the evident impessibility of
existence of these two identical particles in the same local space it is cnough to draw the
structure of such two particles. The cones of anisotropy with the FF strings scanning over their
surfaces do not allow iwo identical particles to coexist. On the contrary, the colourless ineson
structures may be easily situated in one system, having the same guantum numbers.

Indeed, in this case the FF sirings compensate cach other and there are no causes preventing
these identical particles from peaceful cocxistence. Yet, according to TFF, the concentration of
mesons cannot be infinitely great because it cannot be greater than the concentration of EPVsin
PV surrounding the particles. The question ariscs why only two positive BEPs from differcnt
series can form QS with EPV, according te the structural diagram (2BEPs + LEPV), We now ex-
plain this fact.
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Table 5. 7
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The internal structure of BEP and dynamics of the fundamental field charges distribution
inside this structure are shown in table 5.3. It is seen from the table that the pesitive BEPs of the
firstand the second serizs (A= 1 and 3) differ from each other. The FF dominant positive charge
of positive BEP of the ficst series is situated on the external orbit, while that of the second series
is oni the internal one. Therefore, these iwo positively charged BEPs from different series can be
united and form a stable system whose components do riot annihilate. This is provided by the fact
thztin spite of the equal charges these two BEPs do not seek to push away each other because they
areatiracted by the opposite charges of FF on the orbits: ithe BEP of the first series has the positive
charge of FF and ihc BEP of the second series has the negative charge on their external orbits, it

is vice versa on their internal orbits.
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Table 5.7 continuation

9 10 11 12 13 14 15
1/2 -1/2 -1 -1 X %
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prohibi Y,
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Forall the negativel, charged BEPs (/#5=1and 2, A=2and 4) the dominant negative charge
of FF is situated on the internal orbit, in this sense they are similar, and because of this fact they
cannot form a stable structure from two negatively charged BEPs. Neither can positively charged
BEP together with negatively charged BEP form the quark structure besause they annihilate. Just
this fact determines the charge features of BEPs forming the quark structure.

As we mentioned above under the description of the mechanism of particles formation, only
the division alone is realized somewhere, and somewhere is the division with mapping of the BEF
charge. What is the reason of it? In the case of the baryons it occurs because the division of the
charge without mapping is possible only when there are three colours of the quarks in the quark
structure. If in the quark structure the quarks have two varieties of colour, for example, 1, 2, 2or
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2,1, 1 tand other combinations),then the mechanism of division is sure to be supplemented by the
mapping as if to compensate the absence of one coiour (the symmetry responsible for this process
can be disturbed).

The mesons have a different feature. If EP-q and EPV-q have the same colour,then only the
division of the charge is possible because only in this case the colourlessnessis achieved. If in the
quark structure the EP-qand EPV-qare of different colours,then the “anticolour” isinduced onto
the EPV-q from the priming BEP and this process should always be accompanied by the electric
charge mapping.

We also mentioned above that the particles of the third series (the leptons) have no quark
structuie. In this meaning the leptons are the “bare” particles. These statements need explana-
tion which we give herein. The base of physical vacuum is the proton-antipreton (p* p”) vacuum.
The concentration of EPVs in this type of vacuum is equal to ny, ¢ -y = 1.545 41 10% 2,

while the concentration of EPVs of the electron-positron (e* ¢7) vacuum, the nearest to the men-
tioned above type of vacuum, is equal to My(ete) = 1.730 09 .10%° c™2 , i.e. it is ten orders less.

Therefore, the main propertics of physical vacuum, in particular the permittivity of vacuum, are
determined by the proton (antiproton) parameters. From the mentioned above it necessarily fol-
fows that though BEPs of the third series can in principle form the analog of QS, the stable stru-
cture with the elementary particies of their vacuum, yet, this structure has a very small
probability of existence during the time 7 which weuid satisfy the uncertainty relation
mcs = h.

The exceptions of this rule are sorare that in spite of the fact that there are about a millioa per-
mitied BEFsin the third series only ten states of them, according to the computer calculaiion, ha-
ve the reasonable probability tc be observable in our space (for detail see part IV). Three of these
states have been already discovered — the electron, the muon, the 7-lepton and their antipartic-
les. The fourth state with the mass and charge of the positron, but with the lifetime equal
101.02 .10™%s is also practically found in the solids. Yet, this particle is adopted to be called the
“hole” though during fifty years sirce Dirac introduced this notion nobody has found until now
what the “Dirac hole” is like, besides the fact that it is something having the posiiive charge and
the mass of the positron. According to TFF, this is the iepton with the lifetime equal to 1.02 -10~%s.
The particles of the fourth series and of the subsequent ones are not observable direcily in free state
in our space.

The lepton states predicted on the basis of TFF bat not found yet, which in principle can be
observed in our space, have the following parameters:

1. The mass is equal 10 4655.82m,, , the lifetime is equal 10 1.08 -10~'%s,

2. The mass is equal 10 2793.52m,, , the lifetime is cqual t0 2.68 -10™s,



3. The mass is equal to 2327.95m,, , the lifetime is equal 10 3.45 - 10— 13,

The paramelers of the r-lepton predicted in the publications of TFF in the beginning of 1975
{7 ] were completely confirmed in 1982 (for detail see part [V).

Thus, the particles of the third series are observable in very few cases. Besides, the radius of
the structure of these particles is three orders more than the radius of the structure of the particles
of the first series. Therefore, the particles of the third series can not take part in stroag interac-
tions. Yet, there is an analog of the quark structure in the form of the union of the “bare” eleciron
with the excited EPVs of the electron-positron vacuum. But this analog is not the quark structure
in that form which we desctibed here. This structure needs a special discussion and we do not give
it herein.

This is a brief accounti of the structural features of the leptons.

The physical model of QS described herein allows te solve the puzzle of K _,'f' and K s? mesons,

which was put by the experiment. Asitis seen from table 5.7, there are iwo quark structures (d 2
and (s%d*) in multiplets § (QS No 30) and 8 (QS No 40) which differ only in the following: in onie
case d-quark is the EP-quark and s-quark is the EPV-quark while in the other case it is vice versa.
Though both structures constituting this isomultiplet have zero charge, their properties (in the
first place the lifetime) are different. For the rest both QSs are almost identical. In existing con-
cepts on QS they are totally identical because the difference between the EP-quarks and the EPV-
quarks was not known previously.

Besides, in this isomultiplet consisting of two pairs of particles one of the most important sym-
metries is violated, which results in differ=nt hypercharges of the pairs constituting the isomul-
tiplet. Such violation is absent in each of 19 isomultiplets of the baryons and mesons.

Asitis known to us, this is the first explanation of the nature of violation of the CP symmetry
of Kf and Kg mesons with which this isomultiplet is identified.

We have already mentioned that the features of the quark structure of the baryons and mesons
determine their statistics, and the Pauli principle is due to these features. Here we should like to
enlarge this statement. The main difference of the baryons quark struciure from the mesons
quark structure consists in the fact thatin the last case physical vacuum is the element of the struc-
ture. It is easy to see that in the case when PV takes part in the formation of the struciure, the
number of analogous particles in a certain finite volume can be greater and is limited only by the
concentration of EPVs which is very great. Therefore, the mesons with the same set of quantum
numbers can coexist in a small volume in a very great quantity. At the same time two identical ba-
ryons can not coexist in one physical system. All properties of baryons are unambiguously deter-
mined by the properties of the quarks constituting this barvon and the string structure of these
quarks is only one and the same.
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Thus, the principal difference of the bosons froin the fermions is deiermined by the fact that
physical vacuum is the element of the quark structure of bosons and therefore, this structure can
have very great, though not infinitely great, quantity of structural analogs with the identical pro-
perties. On the contrary, the structure of the fermions is unambiguously deiermined by three
quarks and the identical analog cannot be formed by these three quarks. it is easy to see that this
fact determines the physical essence of the Pauli principle which does not allow fermions 1o have
the identical analog with the same setof quantum numbers within the same system. Thus, the fer-
mions and bosons have different quark structures, different internal symmetries and, conse-
quently, different statistics, The discussed above reasoning of the Pauli principle and of the
relation between the statistics of EPs (considered as the quark structure) and the spin results in
some corrections of these fundamental principles of modern microphysics.

The first correction consists in the fact that the unified system. where, according to the Pauli
principle, two fermions cannot exist simultanecusly, should be considered as any physical sys-
tem consisting of fermions between which, within the bounds of the given system, the interaction
of the strings of the fundamental field exists. Qutside this system the Pauli principle is not valid,
50, for example, it is impossible to state that on the Earth and on the Sun there can not exist two
identical protons with the same quantum numbers because of the fact that both these protons be-
long to the same solar system.

The second correction consists in the fact that the maximal number of bosons per volume unit
cannot be above the concentration of EPVs in the vacuum with which these bosons interact and,
consequentiy, can not be infinitely great. Modern concepts allow to suppose the existence of sys-
tzms with infinitely great amount of bosons in the finite volume.

In conclusion we mention such featurss of the quark structures in TFF which show that in
contrast to ordinary quarks these quark structures have propertizs completely corresponding to
the experiment.

. In TFF the quarks are the elements of the structure and originate under formation of the
structure; under destruction of the structure the EP-quarks transform into BEPs, and the EPV-
quarks inte EPVs. There are no stable states of free quarks with the fractional charge, which in
principle corresponds to the experiment.

2. After destruction of QSs during some time their elements can existin the “quark” state un-
cer tha infleence of external forces and special external conditions. Yet, this state, like any me-
lastable state, is very unstable and short. This fact completely corresponds to the incontrovertible
Fairbank experiments [125 ], which up to now ncbody could explain.

3. The described herein concept of EPs as the quark structures, discussed within the bounds
of TFF, allows, as it would be seen in part IV, not only to calcuiate the parameters of elementary
narticles in more correct way but also to determine such guantum numbers as the baryon number
B, the isotopic spin and its projection /5, the hypercharge, the colour and the flavor. Besides, the
knowledge of the principal features of Ss makes the correct calculation of masses, charges, spins
and the magnetic moments of EPs easier.
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8 RESUME

1. Substantial analysis of the probl=m, initial principles and major concepts are discussed.

2. The recognition of the necessity of developing the unified theory, which would include all
interactions in matter , took place only recently. For many years most physicists did not agree
with Einstein, who during last years of his life upheld the necessity of developing the unified theo-
ry of all interactions of substance, just the substance, supposiug that the unified theory would in-
clude all existing things. A= a matter of fact, as it is clear from the whole contents of the book, it
concerns not the whele substance bui only that part which possesses  the mass as a measure of
inertia. The modern theory of matter rests upon the quanium theories and both SR and CR. inthe
basis of the concept of the substance structure there is a notion of the scale of ranks of the quantum
objects. Its ranks are the following: the first is molecular-crystalline, the secord is atomic, the
third is nuclear and the fourth is subnuclear. It was supposed that the enumerated above things
exhausted ali the matter. The book has shown that it is an unlawful supposition. The closed uni-
fied theory may be developed oniy in the case when deeper stages of structure of matter are also
taken into account. It concerns the following: the virtual state, which is postulated, is used, but is
not explained; the physical vacuum, which is introduced into physics, but its essence is not cla-
rified; the primary brick of the Universe, calied the fundamenton, and its unity with the entire
Unverse.

3. A new paradigm is discussed which is called the Paradigm for Viable and Developing Sys-
tems (PVDS). This paradigm is considered as the methedoiogical and mathematicai basis for the
creation of the unified theory of field. It is noted that PVDS is or, to say more correctiy, may be
the basis for more general theories which include not only matter but also other materia! forms. ln
this book the paradigm is used as the basis of TFF.

4. It is shown that modern mathematics cannot be considered only as a toel of the analysis of
already discovered, formulated and grounded physical principles of the theory and its regulari-
ties. Modern mathematics turnsout to be of the heuristic value. It can be not only a tnol of the ana-
lysis but also the basis of the development of the principles theraselves, as well as the laws of the
physical theory. These immense heuristic possibilities of mathematics were not seriously
used previously and moreover, they were not recognized at all.

Mathematics, as a heuristic tool of modern investigations in natural sciences, is considered in
detail in the book. But its comparatively small volume does nct allow to reveal thoroughly all the
structures of those branches of modern mathematics which can be considered as the ground of the
heuristic possibility of constructing the fundamentals of the theory. Therefore, only the principal
conclusions of modern mathematics are given here, which enter into the core of the heuristic ap-
proach to mathematical reasoning of the fundamentals of the theory. These concise formulations
are called the definition-résumés (DR). The principal DRs are enumerated. Their contents are
given together with the corresponding references, so that the reader would be able to learn in de-

141



tail those divisions of modern mathematics which are considered as the basis of heuristics of the
development of the theory.

5. In biology thereisa very important, in our opinion, even a fundamental notion, whichis cal-
led the metamerphosis. In fact, this is a particular type of the metamorphosis, i.e. the time meta-
morphosis. It turns out that nature does not restrict itself to the use of the time metaicorphosis,
1.e. transformation of an independently living object into different forms during a definite time.
In nature not only the time metamorphosis but also the spatial metamorphosis is realized. The
spatial metamorphosis is the existence of the same object objectively at the same time in different
spaces, i.e. the same object may exisi in one space as one objectand in another space as quite a dif-
ferentone, zccording io its structural and vital characteristics. An ordinary Euclidian space can-
not realize the spatial metamorphosis. In the three-dimensional Enclidian space, under the time
continuously flowing in one direction, the spatial metamorphosis is impossible. Nature uses fiber
tundles and multidimensioral spaces to realize the spatial metamorphosis. The fiber bundles
and multidimenrsional spaces are considered in the book not as abstract mathematical objects sui-
table to formalize some laws znd concepts but as the essences really existing in nature. The fiber
bundies and the multidimensional spaces are not abstract but real things. Without taking into ac-
couni this fundamental principle, realized by the surrounding nature, the development of the
complete closed unified theory of matter is impossible. 1t is so because the principai objects of
matter exist in fiber bundles and naturally cannot be described in the simplest spaces which we
considered, 2nd still consider unlawfully, as the single realities of Nature.

6. The Paradigm for Viable and Developing Systems demands that the unified closed struz-
ture of all features of the matter bricks shouid be described by the corresponding space-time diag-
ram, which would satisfy thz requirements of ihe closeness and commutativity. 1f the principal
forras of existence of ene or another independent object of matter cannot form (in different sub-
spaces) the closed system satisfying the commutativity conditions, then such system cannot exist
independently and what is more, claim  viability.

7.1t is shown that in the basis of the matter construction there is a scalar field which has its
sources-charges. This scalar field forms principal tensions (forces) in the world of matter, vni-
fyingall Universe with its principal elements, the centers of the Universe, the charges of the fun-
damental tield. Since any element. basic in maiter, is the center of this Universe, then the
Universeis a closed geometrical object, any point of which is the center of this object. This object
is the closed three-dimensional sphere 5 .

The main eguation of the scalar compenent of the fundamental field is derived. It turned out
that from this equation such excluding properties of the scalar field followed which no field, pre-
viously considered in physics, had.

In the entire Universe the scalar component of FF creates the finite charge but not the zero or
infiniteone. Itisof special interestand significance thatif tointegrate the density of the charge,
criginated by the fundamenton over the entire Universe, it turns out that the integral, summing
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upthis charge, is notonly finite but exactiy equal to the constant (called the charge) , whichenters
into the equation of the scalar component of the field. Apart from it, the density of the charge of
the scalar component of the fundamental field is finite in the entire space, from the center of the
charge o any point of the space.

8. Itis shown that in TFF the space-time-matter are unified into the Triunity Law (TL). The
equation of General Relativity which binds the space-time with the matter (according to Einstein,
with the substance) , in fact, is not the local law, determining the gravitational interaction, but the
unified Triunity Law for all spaces, in which a given object simultanesusly exists, i.e. thereis a
relation of the space-time and matter in all subspaces, in which, in accordance with the spatial
metamorphosis, the object of microcosm simultaneously exists: in the base, in the fiber, as well as
in the enclosing space enveloping the fiber and the base.

9. In TFF it is shown that the physical vacuum is the material structure which consists of the
elementary particles of vacuum. EPV represents the unification of the particle and the antipartic-
ie, coexisting in the fiber of the enclosing space, whose base is the laboratory space. In this space
we observe microcosm. [n our space the elementary particles have no structure, they are the point
particles. At the same time, according to the spatial metamorphosis, the elementary particle si-
multaneously exists in the fiber where it has an apparent structure. We cannot observe this struc-
ture, bui we can observe the result of interaction of the structural particles in another subspace
(the fiber). Just because of it and only due fo this fact, in some experiments we do not observe the
structure of the particles, they are observed as the point objects, while in other experiments, ob-
serving the result of interaction between the particles, we are convinced that they have the struc-
ture. They interact in the space in which the struciure exists. The concentration of EPVs is very
great: for the electron-positron vacuum it has the order of 10 particles per ¢, for the proton-an-
tiproton vacuum it is ten orders greater. Itis clear that elementary particles can not existia phy-
sical vacuum without interaction with it. Thercfore, the existence of isolated (“bare”) elemzntary
particies (BEPs) is impossible. BEPs are sure to be united with some EPVs. The purely bare ele-
mentary particles are only EPVs themseives, therefore, they are not observable in cur laboratory
space where they are absent. At the same time, when BEPs are united with EPVs, the structurc
(BEP+EPV) appears. Itis thatwhatis called now the quark structure of the elementary particles,
i.e. according te TFF, the guark structure is the union of the BEPs and EPVs excited in a2 certain
way. Just these elements of the excited BEPs and EPVs, which formed the quark structure, are
the quarks. The quarks theory, based on this principle, not only coincides with the experiment
and with the principal ideas of the existing quarks theory, but explains the nature of these ele-
ments of particles, i.e. the quarks. It becomes clear why the quarks have the fractional charge, and
why they have a certain force field, which at random and unlawfully is called the “colour”, It be-
comes clear which property distinguishes one kind of quarks from others, i.e. the nature of that
quark property which is unlawfully called the “flavor”. The quarks theory and its consequences
are discussed in the last subsection of part L.



PARTII

THE PRINCIPAL EQUATIONS OF THE THEORY
AND THEIR SOLUTIONS

] The Triunity Law
of the space-time-matter

Rewrite the principal equation of the triunity (see the equation (5.53)):

RO - 140 (&, - 20y) =ic"'%€ﬁﬁ9. (1.1

Itis known that there are many solutions of the equations of such type even within the bounds
of GR. A part of these solutions was discussed above. Here we shall rest upon the discussed struc-
ture of the solutions of the equations of the (7.1) type and especially upon the cardinally new in-
terpretation of the mathematical essence of these solutions. This new approach is connected with
the use of the spatial metamorphosis which is the corner-stone of cur methodelogic basis, i.e.
PVDS. Within the bounds of this approach all solutions cf (7.1) should be considered as those
which are realized only in the fiber bundles. According to our interpretation, the “pseudo-geo-
metries” (including the pseudo-Euclidian Minkowski geometry and the pseudo-Riemannian
geometry) have non-equisigned signature by the only reason that the positive terms of the square
of, for example, the simplest interval

ds? = gy, cdt? — g dr? — g,,d6* - g, d¢*, (1.2

concern the real base of the fiber bundle, the negative ones concern the fiber placed in the ima-
ginary domain, and the entire interva! is geometrically placed in the enclosing space whichisa
complex one.

All the more, according to the principle of the spatial metamorphosis, objects of TFF exist in
the Null subspace where the scalar component of FF reveals and in the second and the third sub-
spaces where the charges which are distributed over the entire Null subspace are concentrated in
the points which are sure to move with definite velocities. This is the only reason why it is lawful
to speak about the velocity of their movement even in the static conditions of the Null subspace.
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For the same reason the point structureless charges, observable directly in the first (laboratory)
subspace, reveal in it such properties connected with their spatial structure as the spin, the mag-
netic moment, the mass, etc. These characteristics reveal in the laboratory subspace, but

originate and are calculated in other elements of the fiber bundle.

We have reminded the reader of all this so that the calculation of the principal parameters of
all kinds of interactions in which EPs can take part would become clear to him and when getting
acquainted with these calculations he could restore in memory the information given previously

in the book.

We solve the TL equation for the condition:

o=y
taking into consideration that

Zr 2
fo=1-—Figgz=r

2y
= —:l (mr is the mass generating the field).
o

From (7.2) and the Hamilton-Jacobi equations it follows directly:

2 2
2_ M .. as 2
E —-:-E-(Iﬂgoo)z-rm Cz+g(m["a-'r] szMIS
Y
Putting the condition (7.3) upon (7.5) we have:

E;(gm—l)@gm-——l]-&m ¢t + — m(goc-)

Ty

+ 24, (28o0)800 + ‘wgw=0.

{l+goo)gm+

= const ,

—
" =
s u[tw

and the orbit is stable, i. e.

dr =0,

then the last three terms in (7.6) are equal to zero and the only leftare

(1.3

(1.4)

(1.5)

(1.6)

(1.7

(7.8)
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2
M (oo~ 1) (B8 — 1) + m%? =0. (1.9
;

¥

Since (ggg — 1) {3899 — 1) = (1 — gog) (1 — 3gyg) - then

3
P (1 - goo) (1 = 3ggg) + m%c? =0, (1.10)
r
’
from where
2 e 7.1
S (e TOEE PR @b
or by taking into account (7.4),
v S
4
M= o _E__ML_ , (1.12)
< (1 - go0) (1 - 3g0)
or
21
A b‘:r"”' = (7.13)
¢ - ) 2t = 3g00)

‘We consider that m, = (m,) + (m_)and that it corresponds to the longitudinal part of the ob-
servable mass m, i.e.

] m
m, = f(B) = F(B)» (7.14)
" ( -ﬁ"}h (1 ~ﬂz) B
where
1) = AERO 2700, .19
kfef

Herc and further on all notations correspond to those adopted in part [V dedicated specially to the
calculation of the EPs parameters. The physical sense demands that the following equality should
hoid:

2
r ake
2 = _rT 3 (7.16)

F

where y and « are the constants of the equivalent “gravitational” and field interactions of FF.
From (7.16) it follows:
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a=52. (.17

Then, for example, for the proton we have:

2 12 32
1- k
g ﬁ'u)f L1 =172973525601072, (7.18)
agy (1 = 800y - (1 = 3eoq),

ahic(l -ﬂ%)pk}at}q
mgagp('l —goo):z - ng):?

This is the constant of the “strong gravitation™ for the electromagnetic interactions of the proton.

= 8.246 457 574 1083 c3 / gs? | (71.19)

ety = Yp =

Forany th particle the “strong gravitation™ equivalent to the electremagnetic interactions is
determined as follows:

Y = s: ¢ _ﬂ%)thJt"yz !?20 _ﬁf p const (7.20)
Py = ? — = ' *
€7 20 -y kymP a0 - 20 0 - 3800))

where K is a certain normalizing factor the value of which is near 1o one. The numericai value
Yeely is possible to be determined for all EPs !

For example, the value Vet )for the electron which has (1 — E.f]‘, = =6.333465570 .10"%and
m} = 8.298 099 996 .10~ 35 (see part IV) can be determined as follows:

10 28

13

w3161 53026310 ' x 6,333 465 571-107 'Ox 1.000 000 549 _ 7.580 731 93316
Vel ) = =55 =

8.298 099 996107 Ky, Kn

which is by 1.087 815 483 times less than the corresponding value of the proton
(8.246 437 574 '10%%), if we consider K, 10 be equal to cne.

But fer the electron:
&so (1~ 63) |
Ky = —E———-% = (1.087 678 384) ™" . (7.21)
95, (1 - B )p
Then for the eiectron and the proton:
Vet yre = Yelyrp = 8246 437574108 3 /g5 7|

and foranv EP:
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oz -g e Ae ake
Yty = 7 v 2. 2 (1.23)
ﬂs(l—gm)] (1 -3 “m m

And so, in 2SS the fundamental field excites the electromagnetic intzraction characterized by
(7.22) and (7.23).

In 3SS taking into consideration that
8 = (117 + 1pP12 - 1)
BES) = "]pB]p:ﬁ?) = ﬂ!pﬂlp‘

we have for am:

(7.24)

n
A
o = _ : 1.25
252
2
310‘ cls [: + n-zﬁz 1 {

1
1=
202 *2
% Jp ‘*:%fz% n B
. ”1'8]

According to the physical sense for the third subspace:

1 L2 32
1= ]*f &

1=

2
o [ i

£ P a2 | a-pYe,

' (7.26)
where
a) the first term is the complete analogue of

L =B Bam0 -8
RO-BDRE By -8

=Bk,
Biky

x

12
b) the second term %% is the factor of the transition from 3SS to the calculation subspace
5
3—1);
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-, - .
) - ]31' is an additional facior under mapping;
~F2

]
d) ;“-is the factor, taking into account ihe permittivity of physical vacuum.
ip

Taking into account (7.24) we can write (7.25) as follows:

3 2 z
® - AUEP Dby . a.am
PR+ P -2 P s pd P -2
where
2 :
3 _ g2 @y,
d = f‘z a ﬁ; ‘hg _U-B) e, f:) 2 = (7.28)
f RP -8, (1_3:)9 “pkrety
3) 3;, 12 iz
R} o, By
By substituting the corresponding numerical values we obtain:
o = 1,000 000 003,
i.e. o is equal to one, up to the accuracy of our calculation. Since
@ o _Ae (7.30)
Y o :
then
;@ = _Lc_,f . (1.31)
e

Thus, we have found the constants of the strong and superstrong interactions.

Tofind the corresponding constants of the weak interaction we take into account the fact that
there is the following relation between the constants of the field interaction in 38S and CSS (in the
latter the weak interaction does take place):

w__0-8),

X yeak — @ ¢ Iﬂi‘“ 3 _ I)” . (7.32)
Since o' = 1, then

(1 _ﬂz} -15 P
Boeut = (I.d?} T l)h = 0.103 987 430 .107% . {1.32a)
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Taking into account the fact that strong (snperstrong) and weak interactions are provided by
the string of FF, and that along the string the parameters of the field and, consequently, those of
the interactions changz linearly, and that in the third S5 the length scale differs by
a(l - ;32 ];' times. we obtain the radius of the wezak interaction:

uu} 4 {l ﬁz (-5 g

a'cik

i (1.33)

weak

Since KY = 1.615950164.10"% ¢, then R, .,, = 2.161236440-107"c. It corresponds

very well to the well-known from the experiment concepts about the radius of action of the weak
interaction forces.

Since, for the weak interaction the followiag formula also holds:

Tweak — ﬂwcak {7.34)

S

then in thiscase we find y,, 5, = v*"".

Thus, there are three constants of the field interaction:
1) the strong (the superstrong) interaction with of® = 1 ;
4 2) theelectromagneticinteraction with o« = 7.297 320 66 .107%;7.297 352378 .107  {7.3%)

3) the weak interaction with ™" = 9.193 987 430 107",
and the constants of the strong gravitation corresponding to them:

1) the strong (the supersirong) interaction with +*' = 1.130 059 064 -10* and
G¥=6.671671175.10"c*/ g+

2) the eleciromagnetic interaction with v/ = 8.246 437 57 .10% ¢* /g 5% ; (7.36)
3) the weak interaction with y#™" = 1.832 564 93.10" 3 /g 5% ;

4) the macroscopic gravitational interaction with+'" = 6.672 444 46 .10 c* /g s*.

In TFF, for the first time, the result is obtained, according to which the constants of the gra-
vitational interaction in the most deep regions of microcosm and in macrocosm are very close to
each other, almost equal though not exactiy.
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The result of the calculation of these constants is very important. It shows that
m
Ly = 100011582, (1.37)
b

and at the same time

la
[,—'t} ~ 1.000 115 83. 7.39)
2p

Thus, the constants of the gravitational interactions iu the third and first subspaces differ by
the ratio of the square roots from the permittivities of physical vacuum for the external (g, B ) and

‘nternal (e, ’ ) circular currents of the proton structure in S5(2—+1).
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HOW TFF EXPLAINS
THE ORIGINATION OF SPINORIAL
AND VECTORIAL FIELDS

Itis known [}44 ] that Dirac has obtained the spinorial equation of field from the Klein—Gordon
equation of the scalar field by means of quotation of the operator

(0-m?)*), 8.1)
Thus, [3]:
{r:—mz}e(iy*a—:;+m}[z‘y"£;-m). 8.2)

Toobtain the spinorial equation from the scalar equation of FF we consider the following. The
right hand side of (5.34) is equal to zero for the spectrum of permissible values of the constant R
on the surfaces of the spheres Sf where R takes the following spectrum of discrete values:

B G ER Y e TR s 8.3)
These spheres are the boundaries of the manifolds for which (5.34) holds. Consequently, for
this spectrum of values R on the corresponding 52 the following condition holds:
-2 1 I s
ApR?9p =0 (R=--— -, ifh=c=1). (3.4

Yet, for the operator A + R™? the Dirac mode (8.2) cannot be used because the quotation of the
(8.2) type is not permissible for the operator independent of the time. We introduce the time and
replace (5.34) by

Ok = (& - 284 5 @

(the right hand side is the same since it is independent of the time). It is easy to see that in this
case the Dirac quotation (8.2) is permissible for the spectrum on these surfaces. Yet, it is
permissible not for all possible solutions of (8.5) but only for those which satisfy the condition

a A -1 P
— = =] m + my — | £ =) 5 {86}
ax, h'o] [ PrF ¥ £ d &Ig \"]

-
) The notation is borrowed from [3].
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where = ¢ — ipgpis the poteniial which is the solution of (8.5);

(@0
Firp
F2rF
l‘\.":pp

Consequently, from (8.5) and (8.2) we have two spinorial equations:

Pap = is the four-component function of the FF potential. (8.7)
4

)

(f?”;fi“ Ly y(x) =0; (8.8)

iy a—:r + R Y(x) =0, (5.9)

which hold only for the above-meationed surfaces 52,

Under the proper choice of matrices " the equation (8.8) becomes the ordinary Dirac equa-
tion [3 ], and in the case when J-function is redefined, (8.9) becomes the spinorial Dirac equation
conjugate with the first one. In the case, when y-function 1s notredefined, (8.9) becomes the
Dirac equation for the particles with negative masses. Both these results do correspond with the
structure of BEPs in TFF. All the more, only the structure of the particles described in this book
satisfies the equations (8.5)—(8.9).

Thus, the spinorial equations first found by Dirac are the equations of both the structure and
the dynamics of such structure for the sources-charges of the corresponding field. The first work
indicative cf the fact that the Dirac equation characterizes a certain structure was that of
E.Schrodinger, who had found that there was a certain internal motion in the Dirac particles. He
called it Zitterbewegung. This motion is characterized by the frequency

2, @.10)
(where H is the hamiltonian of the particle dynamics) and the amplitude

ch? g (8.11)
P Ll (8.

The most curious is the fact that in the case when the momentum of the particle as 2 whole is
equal to zero, the eigen values of the operators of the frequency and amplitude of the internal mo-
tion are respectively equal to

2 %izand,a i .12

2me’

and the linear velocity of such motion is exactly equal to the velocity of light c.
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This result turnaed out to be a starting point for a number of works carried out by Honl and
Papapetrou (see, for example, [21 1) where the authors showed that the Dirac equation described
the “mass-dipole” consisiing of the positive and negative masses and moving with the velocity of
lightalong the circumference of the radius of the order of the Compton wave-length. These works
did not nse any resonance in the principal jeurnals on physics. From the positions of strengthe-
ned agnosticism discussed in section 1, such works were “taboo”. To justify this unlawful inter-
diction, praciically all physicists caught up the proposition of the English theorists Foldy and
Woithoisen to redefine formaily the coordinate operator in the Dirac equation and by doing sc, as
they said, to remove the internal maotion in the Dirac particles. 1t was so much in keeping with the
publicexpectations that the works of Foldy and Woithoisen are still cited everiin text books in spi-
te of their complete erronecusness. This “trembling” motion of some internal elements of the
Dirac particles cannoi be removed in principle within the bounds of the Dirac theory itself. In
1973 this was proved in [141 ] and in the thesis defended by tne same author. Yet, the prejudice
proved to be stronger, and [141 ] together with analogous works of other authors were simply ig-
nored. To Dirac credit it should be noted that he always considersd the internal motion to be the
property of the particles described by his equation and rclated the physical nature of the particles
spin to this motion [144 ]. But this opinicn was also ignored.

TFF putan end to this discussion lasting for many years about the internal motion in the par-
ticies describad by the spinoria! equations of the Dirac equaticn iype, though there have been
other authors who consider that internal motion does existand  is responsible for particles spin.
Thedifficnlties, arisen under consideration of ihe internal “trembling” motion of the elements of
the structnral spinorial particles, are removed in TFF by considering that this motion occurs in
the fibers of the enclosing space of microcosm which are situated in the imaginary domain of this
space, if the base of the fiber bundle, the iaboratory space, is considered to be situated in the real
domain (for detail see the previous section).

The procedures of transition from free spinorial equations to vectorial ones are now well
developed. This inathematical apparatus for transition 1o ihe interacting fields is also thoroughly
developed (see [13, 27 )). Therefore, we shali not repeat here these generally known transitions.
We only attract the reader’s attention to the great additional possibilities of the mapping m=thod
which is beyond the bounds of conventiona! schemes. We illustrate it by the following example.

The scalar component of FF s characterized by the non-linear potential:

e=%11-(1-e®"yy. 8.13

r

Yet, under certain conditions this potential under mapping can lose the non-linearity and
turninto theordinary linear Coulomb potential, Now, we give an example of the mode of mapping
of ihie scalar potential of FF onto the Coulomb patential. The following chain of mappings is mest
illustrative:
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—~R/ir IR/
_Ee-.f!/r__ gt it qe i [_g i.R/r] ~iR/T _ g (8.14)

ir ir

Under this mapping the gauge shift by the value of e R/ is used. The following mapping can
also be obtained in this case:

9_, 9 _, 4 ,~IR/T o 4 +RZir )
el T = e ’ (8.15

Here it is suitzble to note that in TFF the scalar component of the fundamental field (5.34)
and (8.13) has two important features. Firstly, TL (7.1) gives the following square of interval:

ds? = ¢RI g4 _ 12 (sin?p dp? + d6Y) — R aP, 8.16:
it being known that
gy = XM= - &y, .17

r

In this case the triunity equation is solved exactly,and for the mix=d components Ti we have:

4
L R, 4 -R/r R P
To T| -3-;—?';5[8 (l + f}+l]‘ (8]8)
4 52
T:=T)=_ LA _~RI, ®8.19)
2 3 tﬁnyt‘e

Secondly, under the positive sign of the right hand side of (2.5) we have:
=201 - By _
I',[(1 - 1] ; (8.200
This equation for the potential can be represented in the form:
Je—ulp =0, (8.21)
where w is the function of ¢ satisfying the condition
wig) =5 [0 - P~ (8.22)

In this case without any additional suppositions and assumptions we have all important features
of the Higgs equation for the non-linear function of the potential #{ ¢ ), including the celebrated
“Higgs effect”.

Indeed, from (5.20) for u( ¢ ) we obtain the dependence of u on ¢, when two minima are
provided and consequently, the Higgs effect is also provided. In TFF for this aim there is no need
tointroduce artificially the fitting potential. The Higgs effect is peculiar to the principal potential
of FF.
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Thus, in TFF as well as in other modern gauge theories the appearance of the mass in 185,
while in 285 it is equal to zero, is the consequence of the Higgs effect.

In the conclusion of the discussion on the vectorial fields origination in TFF it is necessary to
note the following.

1. The scalar field, staticin time, existing in 0SS, is mapped onto cther subspaces only under
the inclusion of the time, forming there, the moving structures connected with the vecioria! fields.

2. All the structures arising in other subspaces are the spinorial objects, and in the normal
state their spin is equaito 1/2. There are no special spinorial fields. There are spinorial structures
arising under the quotation of the equations of the static scalar fields.

3. The symmetry centers of the structures are the geometrical place of mapping of the field,
i.e. the charge of this field. The places of location of the charge of the scalar and vectorial components
of FF do not coincide, i.e. the complex shift occurs. So. the charges of the scalar component are
situated in the centers of the 058 celis and ihe charges arisen under mapping and including the
time of the vectorial fields, are situated on the boundary of the neighbourhood of the signed point,
where the charge of the scalar componeni is situated whick meves along the trajectory placed on
this boundary.

4.Incontrast toscalar fields having the spherical symmetry, the vectorial fields have the axia!
symmetry.
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g GUANTUM AND RELATIVISTIC
PROPERTIES OF MATTER STRUCTURES

9.1,
Principal eguations

At first we consider how soliton structures arise in TFF, Itis possible to show thai the
subparticles structure on the circumiferences is introduced into TFF in a naturai way, if to use the
grecup approach in the subspaces description and the notion of the Lie group with the memory.
Yet, this approach does not allow to describe effectively the dynamics of such objects. For the
description of the dynamiics it is necessary to use the dynamic equations of the field, reduced on
the circumference, which turn outi to be non-linear ir this case. Recently [14C ], methods were
developed of the exact solution of a certain class of the noa-linear probiems which show thzt the
soliton-iike solutions arise in a sufficiently wide class of such equations. In this connection wr also
investigate the soliton structure of the soluticns on circumAferences forming the particles
substructure in TFF. We shall show that the subparticles moving along circumferences can be
considered as the soliton-iike clots of the charge density which are regularly situated on the
circumfererces and move with the constant angular velocity.

Most of soiitons studied in [40] are one-dimensional solitons, given on R'. We iniroduce tne
mode of transition from the manifold R to the manifoid I/ (1}, isomorphic to the circumfereuce.
For this aim we use the following mapping which is the homomorphism of tie groups:

F:R—=U(1);

lF(z) = e®=c U().
Bv means of mapping (9.1) it is possible to put the function given on K in correspondence io aay
function givenon U (1). The reverscis wrong. In order that the function f : R — xcould bz trans-

ferred to U(1) by means of (9.1) il is necessary (and sufficient} that f should be the periodical
function with the period equal toone, i.e. f (x) = f(x + 1)forallx € R ..

9.1

The differencial equations given on R can be transferred to U(1), if the dependence of these
equations on x € R (if any} is also of the periodical character.

The most studied equation, having the soliton solution, is the Corteveg de Vries (CdV) equa-
lon:

y+Vo(r+2yr+lyy=o. 9.2)

As we see, this cquation does not include the terms dependent on x. Therefore, it car be
trunsferred to /(1) by means of homomorphism (9.1). Further on for studying the model we
assume that the charge density on the circuinference satisfies this equation. As it would be scen,
such assumption does not reduce the accuracy of further calculations.



As itis known, ou R the equation (9.2) has the exact soliton solution ot the form

Wox) = v/ h 2("—I”' ) 9.3

wherru=‘ua[1+ : 23‘[

3}1‘,

To transfer the solution (9.2) to ihe circumference, the solution should be periadical. The so-
lution (9.3). apparently, is not periodical. Nevertheless, it is possible touse an approximate
approach. We introduce the following function into consideration:

yhaltx) =Zytx -5 NEN, 9.4
n=—o

where NV is the positive integer; yis determined from (8.4;. It is not difficult to see that this series

converges for all ¢, x. Further on, if the soliton width (9.3) is much less than 1/N, then (9.4) isan

approximate solution of (9.2). The profile of the function (9.4) under the fixed ris of the form of

the infinite sequence of the peaks sitvated at a distance of 1 /N from each other.

The condition under which (9.4) can be considered as an approximate soiution of (9.2) is as
follows:

4K a
! =

(3’0
Itis easy to prove by means of a direct estimation of the error. It is alsoclear that the solution (9.4)

is periodical with respect to x, with the period equal to 1/ ¥, i.e. 1 is aiso the period.

Indeed,

/..l. b
hapu 9.5

(rx+ Ej'[f\'—i; T':r')

A=-o n'

Tyltx-%) =yx). (9.6)
-—0
If this condition holds it means that the sclution (9.4) can be correctly transferred to the circum-

ference /(1) by means of the mapping (9.1). If to make substitution § = 2xx then the function
(9.4) on the circumference is rewritten in the form

yN(to) = Ey(: =2 o.7
It is clear that within the interval 0 <@ < 2q there are exactly ¥ “peaks”™ of the function (9.7).

From the condition (9.5) it follows thai they are sharp, narrow peaks; they move along the cir-
cumference at the constant angular velocity:
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w = 2uav = 2my, (1 +-:%) 9.8)

The effective width of a “peak™ is calenlated from ihe forrauia

'z
B = 20l =2 (%ﬁ) 2 ©.9)

Taking into accouni the condition (9.5) we have:

8 i << i." ; (9.10;

If, as it was mentioned above, to interpret the function on the circumference as the charge deasity,
then we obtain N “clots” of the charges regularly situated on the circumference. Due
to the condition (9.10) they can be considercd as the point particles, moving aiong the circury -
ference at the constani angular velocity deiermined by (9.8).

Thus, on the basis of the soliton approacr the dynamics of the subparticles can be described
in TFF. We also note that an approximate method of obtaining the periodical (with respec!
te x) soliton-like solutions of the equation (9.2) is used here. {The better the condition (9.5)
holds, the more correct the solution is). By now the method has been developed to obtain the
exact periodicai (with respect to x) sclutions of such type equations. It carni promoie the miorc
exact investigatious of the subparticies dynamics in TFF.

As far back as in [19 ] we noted that the L. de Broglie equation, without fail, has connec-
tior with a certain wave process:

v=u— A

du
di 9.1

inwhich there is the following relation between the phase velocity u and the greup velocity v

uv =c?. (9.12)

From these equations it follows that

——5———= = const . (9.12)
(At - 1)2 -

If the group velocity w coincides with the velocity of the particle whose mass is m, then assu-

ming the constantin (9.13) to be equal to ’—:E-;, we have the L. de Brogliz equation

o= (9.14)

R

Itis shown in {33 ] that the motion, relative to the stationary wave, causes a pecuiiar wave pro-
cess, formally adequate to the dispersion. {1 turps out that this “ pseudo-dispersion” when it
isvery smaliresults in the L.de Broglie equaiion in limit. A certain coefficient appears, when
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there iz a need to take into account this dispersion in the right hand side of the equation (9.14). in
TFF the phenomenon cf the “ pseudo-dispersion” is interoreted as the result of the particies mo-
tior relative to the stationary waves in PV, which were formed under mutual compensation of

the radiation by the charges of FF, moving on the “internai” and “externai” circumferences of
the BEP structure in 258 [7, 14, 33, 34].

Itis verv important to emphasize here that the quantum processes in the laboratory 35 arise
by the only reason that their existence is provided by the processes occurring in other subspaces
(Ebers) wherz, though it seems paradoxical, the motion can be guasi-classical with a small
yuantum of the action or even classical (sec Fig. 9.1).

g e EPV
t=0 ,’ I'e+ ™~
Vi \\‘_e;} \\
/ \
/ 7y \

,-——“i !
- /ot O\

= e £
t=t, (& S EPV

/ \ s . \\
/ \\
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/.fé \\ |

_‘_‘_,_....___h"l e+’)' new EPV

t=t, !// V_

\
| !
i

Fig. 9.1 Scheme of origin 2nd annihilation of an elecroa in the atom in the second subspace (this process is
responsible for quanium properties of electron covers).



It turns out that the physical nature of all principal equations of quantum mechanics is
cornected in this or that way with the processes of interaction of bodizs both with physical vacuum
or by means of it. This is quite evident under the deduction of the Schridinger equation.

The Schrodinger equation like other fundamental equaticns of the modern quantum theory
can be deduced in different ways. Here we give the simplest deduction of this equation.

The Schrodinger equation is the equation of stability of the particles described in 1SS. We now
write the stability equation for the action s in the following form:

As =0, 9.15

For the instantaneous value of the energy E of this stable system by the non-relativistic
approximation from the Hamilton—Jacobi equation we have:

r 2 2
] . 2
E=T+U-= -P—-—+U(xyz]-—[[ax} +[a—;] +[a—:] ]+U. 9.16)

where T and U are the kinetic energy and the potential one, respectively, and the components of
the vector p"are considered as the partial derivatives of 5 with respect to the courdinates.

Since the properties of EP in 188 are determined in 28S where the particle structure, hidden
from us, is situated, we have to search for the solution of the equation in the form in which there is
a certain function of the state ¢ determined in the imaginarv, with respect to 1SS, second
subspace, i.e. we search for the solution in the form of

.9=!'Alogew(x,y.z). 9.17)

Here the constant A relates the momentum | ™| of the particle with the length of a free run of the
particie in PV and is determined below.

Forming the partial derivatives with respect to the coordinates:

s _ 1aty 1 fas\ 1,

i [‘_"a__ A‘(ﬂ*] ]

Ps _ a1 (9.18)
o A [" o A [EJ'] ]

625 -

é_z_z_“l[“’ as® A’[“J ]

and substituting them into (9.15) we have:

~ 4@

2 2z 2
fE ] =0 9.19)
dy

v ok T ap

2 2 2
|[ew+uw+e_¥
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Since, according to (9.16),
2 2 2
s as as) _
[ﬁ] + [a_y] " (E] =2m(E-U), 9.200

then from (9.19) and (9.20) we finally have:

ap+ 2 (E-U)y=0.

Andif A = F , this is just the Schrédinger equation. We can prove it.

According to the definition, in TFF the constant A, = 2w A is the product of the momentum of
the elements of the particle structure and the length of a free run of its subparticles in PV, i.e.

AP = A, ©.21)

Itn, = (n, » M p]' "2 is the concentration of the particlesin the proton-antiproton vacuum, then
itis easy to see that the following ecuality should hold:

e V)
M= ) 4, (9.22)
In TFF
1
sy 2
ny M’R: 9.23)

and then for the length of a free run we have:
My = 2uR,, 9.24)

where R, is the effective external radius of the subparticles motion of the EPV in the proton-an-
tiproton vacuum, which is determined by the equality:

1
P (ﬁ,_ﬁz_ﬁl,_ﬁ.]a,

- £ £
P my ﬂp c 2 1p

(9.25)
where B, , B, B,are the linear velocities of the inertia center of the subparticles and of the sub-
particles themselves, respectively, in the units of light velocity ¢ ; £p and eypare the permittivities
of PV for the protnn;ﬁis the Plank constant. '

From (9.21), (9.24) and ($.25) we have:

12
A = 2q4 [ Aha A4 (9.26)
1 ‘1r' ‘Ip
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Since the following exact dependence holds for the proton:

Ah Al g 9.2
l Fip T F2p

then for the constant A, we finally obtain:

A =27k and A = A (9.28)

Thus, the constant A is the Plank constant as it should be. And consequently, we have proved
here that this global constant has the meaning of the product of the length of 4 free run of the sub-
particles of the proton in physicai vacuum and their momentum.

In TFF the quantum properties of matter and the relativistic ones reveal extremely widely. We
mentioned them above under the deduction of the equation of the scalar coraponent of FF, under
the analysis of the spinorial and vectorial fields, in some way they were touched under the con-
sideration of TL and the geometric construction of ihe space-time, we mentioned them in the sec-
tion dedicated to the quarks and we shall discuss them under calculation of the par ticle parameters,
the greatest part of which are, as it is known, the quantum numbers. Therefoie, hers we restricted
our consideraiion to those gnantum properties of particles which are beyond the scope of
other sections of this book. As an example we now give the analysis both of the geometrical and
some specific properties of the TFF physicai objects.

92.
The structure of the torus as the fiber bundle in 355

This structure (Tor,, torus in 388) is given by mapping:

Tor,, 5 Tor, , ©.29)
wherep (¢ .0 ¢t} = (¢, 8).

Tor,, may be represented as
Tory = sx &'x R, 9.30)
andsinces'x s = Tory , then (9.30) is equivalent to
Tory = Torgx R,
which proves the lawfulness of the representation by means of (9.29).

Yet, all these discussions concern the real manifolds which are the base Tur‘ , the fiber K and
the enciosing space Tor,, of the fiber bundle (9.29). Bui Tor, as the base of the fiber bundie has
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aiso a complex structure, i.e. it is the complex space. A natural question arises whether it is pos-
sible e generalize this complex structure over the entire space TclrIw i

Toconsider Tor,, as the complex manifold,it is necessary io establish one-to-one mutual cor-

~espondencs hetween the small regicns in Tory, and theopen ballsin € N, If such correspondence
could nct be established, thea Tor,, would not be the complex manifold.

Thisisasiznificant and non-trivial question. For example, thecircle | zI =1in € 'is the subset
of tne complex space but it is riot the complex manifold.

The ropological structure of Tor, can be considered as the direct product of (9.30):

Tor,, = Torgx R'.

If this structure is left as it is, then evidently it can not be considered as the complex one, at
leasi because it has 3 dimensions, and for the complex structure the real dimensions should be
even.

From this situation there are two ways out: either to postulate another structure or to consider
Tor,, to be real. The second way out is preferable; yet it is necessary to prove its accordance with
the space-time structure. This means that it is necessary:

1 to sclve the Killing equation completely;

1) to prove that the arbitrary constants structure is in accordance with the supposed local struc-
tureof Tor,, (the neighbourhood is in the complex plane):

Loc (Tor,) = Og » R'. 9.31)

The Killing equaticns on the torus in the apparent form are as follows:

$5=65=0; (9.32)
% ¢S
{Rz:osza T 7 R%inla’ (6.33)

&
By substituting the variables u = 25 T—andy = zé’ 5 these equations can be reduced to
R'cos"a R7sin"a

the form coinciding with the Cauchy-Rieman equations:
U=V (9.34)
Ep™ "t 9.35)

Yet, {9.34) is not compietely equivalent to (9.32); in fact, it should be equal to zero:
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ug=vg=0. (9.36)
Thus, (9.34) and (9.35) determine any analyiical function, and (9.36) puts restrictions on it.
We now describe the class of the analytical tunctions satisfying (9.36).

Let z=z(W) be the analytical function, where
t=u+iv, W=g+1ip.
We solve the given system of equations (9.34)—(9.36). From (9.36) we have:

u.¢=0m‘—u=u{ﬁ}:

vg=0=v=v(p). (9.37)

From (9.35) we have the equation
uB)g=—-vid) g, (9.38)

hence, on both sides of the equation there are constants, i.e. u (B) and v{¢h ) arc the lincar
functions of their argumsants. Thus:

u(p) =g+ . B
lv@l Madid 9.39)

We now find the relation between the coefficients ¢, and b, . By substituting (9.39) into (9.35)
we have:

c,=—b,, (9.40)

i.2. the functions u(B) and v{¢h) have the following form:

i =u, — h B;
(B) = 4o — 5, B (9.41)
vig) = vy + 0.¢.
Thus, the complex function z( W) has the form:
z(W)=u+iv=uyg— b p +vpi + bgpi (9.42)

or
Z(W) =uy +ivg + ib_ (¢ + 1B),
where HotCOHSt. \.‘G"EOI'ISI, b.."COI'ISL

Thus, we have completely solved the Killing equation in a complex way. [ts sclution has the
compiex form:

2=z + ;.ﬁ:w, 19.43)
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and the real one:
z=wiv=iy +ivy +ibld+iB), (9.44)

where z, = u, +i v, = const js the arbitrary complex constant; b, = const is the arbitrary real con-
stant.

In equation (9.29) itis shown that the local structure of Tory, is such that itis the real manifold

of dimension 3 containing a complex submanifold of complex dimension | (i.e. of real dimension
2):

Loc (Tory, ) = C'x R'. (9.45)
‘We now compare this structure with the arbitrary constants of the Killing equation.

The Killing cquations are the equations of the first order and to solve them unambiguously it
is necessary to give the initial conditions (0, , z;). What are the initial conditions like? This is ex-
actly the point in Tor,,.

The complexity of time with respect 1o Torg reveals in the following: the function z=z(W) in
equation (9.45) linearly depzndson the angulararguments ¢gand g upon Tor,, . If we consider the
stcady moticn it means that ¢p and B change linearly over time. Yet, this linear factor, as
it is shown in (9.30), has to be purely imaginary (itis denoted by i g,).

On the other hand, this factor is the coefficien! of values steady changing over time. Therefo-
re, in this problem it is the time scalc. And this scale is the complex number. It means that under
the consideration of the motion along the geodetic screw line on Torg the time scale is the complex
number,

9.3.
The origination of n particles instead of one,
under the transition into another subspace

In 35S the fundamenton moves on the surface of the torus. Iis irajectory is the screw line. Tor,
is piaced in the enclosing space ES3. If in ES3 Tor,, is considered as a geometrical body, then the
following construction can be obtained.

We now consider the equator of Tory,. It is obtained by intersecting Tor,, and the plane per-
pendicular to the symmetry axis of Tor,, and going through the zero point.

This plane intersects Tor,, , and two circumferences with radii R and R,, respectively, ap-
pearon theintersection (where R and R, arc the parametersof Ter, ). A particularcase R, = J1is
possibie, when the second circumference degenerates into the point coinciding with the zero poiut.
The trajectory of the fundamenton in Tor, is the screw line
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G=nep, (9.46)

where 8, ¢ are the angular ccordinates in Tory, ; n is the integer parameter. The result of the
intersection of this line and the plane gives n points.

The prublem is in the following. Under the approach discussed above n fixed points appear.on
the plane. But it is necessary to obtain n moving points. The difference of the time scales in the
plane and in Tory, in no way saves the situation here in principle, The time scale change
influences only the periodicity of the appearance of these points. Yet, they are the points with the
fixed values of the angular coordinate ¢.

Atfirst sight a simple way out of this situation is to consider that the whole screw line moves as
a unit on the torus surface, rotating around ihe symmetry axis of the torus with the angular
velocity w. Yet, such approach is wrong. The matter is that the geodetic is not a material object but
the trajectory of the movement of a particle. Therefore, the above-mentioned approach is only
reduced to a new line but with a different value of the parameter n:

B =n'p;
n'=n, (9.47)
and the result will be analogous, i.e. there simply is a' fixed points instead of n points (n" = n) .

In TFF thzre is a geometrical relation between Torgand Tory, which is expresscd in the
following. Tor is the base of the fiber bundle, whose enclosing space is Tory, and the fiber is
R':

Tory, 5 Tory . (9.48)

This means that there is the canonical projection p from Tor, onto Torg which in the apparent
form is given as:

plp,0,ct) = (¢,8), (9.49)
where ¢ , 8 are the angular coordinates on Tory, as well as on Torg; ctis the time coordinate on
Tory,.

Thus, itis not necessary to construct additional projections, it is possible to use the canonical
projection which we already have.

From formula (9.46) it follows that the geodetic on Tor g has the same equation
8=ng, (9.50)

because pin (9.49) retains the angular coordinates, vet, on Tor,. the time coordinate is already
absent. Consequently, this geodetic can be parameterized by any affined parameter, because in
this case all such parameters are equivalent. Thus, on Tor . the geodetic can be parameterized as
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="k, ;
9=‘|'-k3-

where kw = const , kg = const , kg = n k‘, (the values of .tp will be determined below in relation
to the time scale in ES).

Torgcan be represented as the quotient space of the plane R on the lattice. In detail it is the

following. We now consider the piane R%and the equivalence ratiopon Rz, given in the following
way:

(x,y) = p(x', y) , if there are such integer numbers m, , m, that
x = 2akmy + X' 9.5D
yo= 2‘:?\_,,!?!2 + ¥,

where A, = const, .\’_ = consi are the constants of the length dimension giving the ratio p.

The geometrical meaningof the constants A .and A is the following. After the quotation of the

plane R?with respect to p (in detail the quotation is discussed below) Toris obtained. It has the
following topological structure:

by st 9.52)

Then A is the radius of the first circumference in the product of (2.52), and A, is the radius of the
second circumference.

Torg = 5

We now consider in detail the quotation of R? with respect to p (9.51). It is also possible to
consider it as the fiber bundle. For further aims it is more suitable to divide the process of
quotation into two stages: with respect to x and afterwards with respect to y.

The quotation with respect to x. The points, whose abscissae are placed at a distance divisible
by Z=\ .and the ordinatesare equal, are identified. This means thatany pointof the plane R2with
the coordinates (x, y,) is attached to the points (xg + 2;:,\};:1', o) for all integer numbers m.
Consequently, any straight line Yo = const turns into the circumference with the radius A .

Therefore, the result of mapping R?at the firs| stage is the cylinder

= s'xﬁ',

or more exacily:

R - R x R Rr? (9.53)
n l l it == l
s'x R B (py ).
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Introducing the angular coordinaie g on s' we obtain the apparent type of the mapping of p, :
¢=p.(x) =7, (9.54)
&

where g takes any value from (— =) to (+ =). Yet, all values of the functicn on the argument g are
restricted because the trigonometrical functions are used.

Mind that (9.53) gives the foilowing structure of the fiber bundle:

2
t‘) —pﬂf}. (9.55)
I '

where (p, , id } is the canonicai |:imjection;ﬁ2 is the enclosing (10tal) space; B is the basc; R is
the fiber.

The apparent form of the canonical projection is
pr(xay) = (e.¥), (9.56)

where x, yare the Cartesian coordinales in R ; (g, y) are the mixed coordinates on the cylinder
B.

The quotation with respect to y. The points of the cylinder B, whese ordinates are placed at a
disiance divisible by 211)\). are identified. Thne result gives the mapping which: is suitable to express

in the form of the “half-diagram™:

= st x R 9.57)

l (idy, p2) I

Torg

The mapping p, has the form analogous to p, :
8=py0) = £. (9.58)
¥
where yis the coordinate with respect to the cylinder forming line; A, ~const (see (9.51).

So, all necessary intermediate mappings are calculated.

Therefore, “at the entrance™ of the given methed we have Tor, and the screw geodeticon ity
the geodetic equation is

-
g is the secoad angular coocainate on Tor
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8=ne, 9.59)
where n is thz integer parameicr; ¢ , 8 are the angular coordinates of Tory,.
We now act by the canonical projection
p:Tory — Torg. (9.60)
Acting by (9.60) onto (9.59) and iaking into account that p (¢ , 8, ¢cf) = (¢ , 8 ), we obtain
the same equation
6=n¢ 9.61)
butor. Torg.

The geometrical meaning is the following: we have projected the geodetic onto the basa in the
enclosing space.

We now consider the fiber bund!egencr:uingTorEircrn ﬁzas the quotiznt st R> with respect
top (9.51). We acton the line (9.61) in Tor . (as a quetient set) by the mapping inversc to the ca-
nonical projection:

¢ =i

’ ‘;' (9.62)
I; .

This mapping has the form of (9.62):

P=N9;

¥o= .\J_G; (9.63)

B=nyg,

where ., yare the Cartesian coordinates on R?. Excluding 8 . o from equation (9.63) we obtain
the following rclation:

9_ .

PR

£=i‘5£=i"n-’y=f~n" (9.64)
* rx"’ I; PR

Yet, this equation (9.64) is not complete, because ihe relations (9.51) are not taken into account
and, in fact, we have a family of the straight lines:

i,
¥+ ehgny = 5 a (x + 2ma,m)) (9.65)
4 "X i
where m,, m, lake ali values of the sct of the integer numbers.
Express (9.60) as the apparent dependence y (x ):

170



i
=% _
Yo ax + 2-n-1r (nm, = my), 9.66)
n

= const ; A, = const; \, = const;m, , iy € z.
Ina generalcase, {9.66) determines the infinite two-parameiers family of the straight lines on

the plane.

We now act on the family of straight lines (9.66) by the mapping (9.53) (p, , id) R* . B.
According to (9.54):

by id)x,y) =(e.¥):

X 9.67
® =i

Then in the cylindrical coordinates the equation (9.66) takes the form:

'"2

=

y=nx e + 2u(m - —
¥ =nky o+ 2uk, (nmy = my). (9.68)
Since the coordinate o is cyciic, we consider:

y(p+ 2nk)j: ke Z;
yip + 2uk) = n (@ + 2ak) + 2ma, (nm) — my ) = (9.69)
y=nk,o + 2k, (nk + nmy — my) .

This is the cquation of the family of the screw lines on the cylinder, taking intc account the recur-
rence of ¢.

We now consider the incremen: of yin (9.68) on the parameter m,:

Amgy = n k¢ + 2ak, (nm) —my) —nk, 9 -

9.70)
- 21:1\:_. (nm) — (my + 1)) = Amyy = 2a), . '
We now calculate A, :
B, =Y 4 2m) —¥e) = nh (o + 2%) + Zmh, (amy — my) — 9.71)

- npp = 2—.:1\}. (nm — my) = A, = 2mni,.

And finally. for the number of particles wz obtain:

. .
LYY 2n ,1‘, )

That is what we needed.
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10 THE NGETHER THEOREM IN TFF

For action in any theory we can write:
s=fL% M) ;¢ ) ) dxg, 0.1}

where ¢” , gp‘_‘;are the values of the fields and their derivatives with respect to the coordinate, res-

pectively. In (10.1) the integral is usually taken over a certain domain of the unfibrated space. In
TFF (10.1) is a particular case for Re D , where D. is a certain domain of the enclosing space.

Consequently, instead of (10.1) it should be written:

PN ke 10.2)
. ID: (" () + 91 () 3 x) ) Aoy

where {is the index of subspace; xﬁ:} is the coordinate in this subspace; ¢“ is the field of this sub-
space; ¢ is the derivative with respect to *{C)‘

Consider the Noether theorem in this case. That is, the law of conservation corrasponds to
any conversion continuously depending on one parameter and reiaining the action St in the sub-

space with the index { invariant.

This theorem includes the Noether thecremn in its present form as a pacticular case for one
subspace, which we observe directly. Thatis why some laws of conservation arc of the approxima-
te character in modern theories. They are merely the mappings of the laws of conservation in
other subspaces onto our laboratory subspace. Therefore, the viclatior of them is allowed.

Perform a usual conversion of coordinates and field functions:
k | e . k.
(Y O " ot B GE
X a[x(;)} = 'P“(I(.;]} + 8 ‘Pa(x(;)) .

In the sufficiently small neighbourhood of any point of the space these transformations can be
made linear:

(10.3)

ok ok o~k

bxey = *“: Gb(c_)- (10.4)
a4 a B

8¢ = DG’ ¢” (xg)) Gty »

where Aj_, is the Lorentz conversion matrix with the constant cocfficiznts; (‘S) are the parameters

of the groups of the conversion in the given SS. The variation of s takes the form:
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85, = J -5 (NK(x) GF) dxg, (10.5)
)

dx“
where
NE=L@AL - 222 pl + 2p2yb, (10.6)
¥y "

Itis easy to see that
dnt

T+ =0. (10.7)
dx,

©)
Consequently, the Noether theorem in the differential form also holds in our case. Besides, we
have to keepin mind that (19.5) and (10.6) do not allow the transition from one SS into any other

because thisis the process of the discrete mapping which can not be represented in the differential
form.

The question arises whether this fact takes place in the base of our fiber bundle as well. It is
easy to see that it depends on the structure of the fiber bundle. Therefore, the differential laws of
couservation are valid in any SS,but they may be violated under the consideration of these proces-
ses in the base of our fiber bundle.

Consider the situation with the integral laws of conservation:
N @) = [ NE () dx (10.8)

where § is the coordinate for anv subspace. In particular, for the time coordinate:

N (t) = [ N2(x) dx s (10.9)
= X,
and
dN (1)
&m0 (10.10)

i.e. the integral laws of conservation related to the time svmmetry (and, in particular, the law of
the energy conservation) hoid in any SS and under the transition from one 8S into any other. Yet,
in the cases when the symmetry is not redvced to the symmetries determined by the time coor-

dinate,and when #/_ includes the values G‘l‘:} which alter under the transition fromone SSintc any
other, the foilowing condition holds:

NE ) = { N, {xg) dxy, - (i0.11y



Therefore, if the process 1akes place in one subspace then as previously

4}
NP

Xy,

and the Noetner thecerem for the integral laws of conservation is valid.

Under the mapping of phenomena onto the base which is “atiached” to the fibers only by the
singie element of each group G, the mos? part of the information about the features of the sym-

metry of the given groupis lost. And the laws of conservation valid for the fibers and demanded by
the Noether theorem, as a 1ule, are not valid in the base.

Thus, in the fiber bundle the integral laws of conservation connected with the symmetries of
the time coordinates may be valid simuitaneously in all SSs. As for the base of the fiber bundle,
i.e. 188, the laws of conservation valid in it, as a rule do not affect other SS5 and vice versa, the laws
of other SSs are not valid in 188, i.e. the base.

We should keep in mind that TL allows ike replzcement of the matrix h; by the more general

nne .’\;r;, , which coincides wiih A;onlv in iSS. In this case in TFF the additional peculiaritics of
the Noether theorem appear.

From the peculiarities of the Neether theorem in TFF, discussed above, itis seen that the
theary demands the validity of all laws of conservation in any given S8 and ailows the violation of
the iaws, valid in one S, under the observation of the process inany ciher §S. According to TFF,
this is the reason for the existence of the violation of the laws of the p-even pariiy conservaticn un-
der weak interacticn, the violation of certain laws of conservation, when it concerns the virtual
slates, etc.

i ’
Résume

[. All principai cquaticns of the Triunity Law are given in secticn 7. For the first time, it i3
shown there that the soiution of these equations, in accordance with the A. Salam true foresight,
charactenizes what he bzs called a “strong gravitation™. Thus, ail types of interactions, i.e.
strone, clectromagnetic, weak and gravitational, with their constants, are analogous, at least for-
mally, (o the gravitational interaction. Field interaction constants and universal gravitaiion con-
stants arc obtained in this section, We use the tlerm “universal™ because we beiicve it defines the
essence of gravitation ina morc complete and exacl way than the term “strong gravitation™. Uni-
versal gravitzion means universal intcraction of all forms of matter due 1o lneir masses [n cach
particular case of this interaction display there is iis own gravitaiion constant. Al constanis of
freld interaction and universal gravitation are calculated and given in this section.



2. Section 8 shows how with the help of conventional mathematical calcuiations the spinorial
and vectorial fields originate from the scalar field. The physical and mathematical meanings of
the spinorial Dirak equation becomes ciear. It is shown that the Higgs effect is the evident con-
szquence of the equations of the theory.

3. Section 9 shows the origination of quantum and relativistic properties of matter and the re-
lation between these properties and soliton-like structures formed by a fundamenton in the se-
cond subspace.

4. The contents of the Noether theorem is discussed in section 10, Since TFF shows the ne-
cessity *o use fiber bundles when dealing with all viable and able to develop systems, the Noether
theoremis considered in TFF inadifferent way than in other theories. The present Noether theo-
rem means one space. [tshould be corrected for a fiber bundle, the correction being as follows. In
the conventional form the theorem can be completely used for each subspace taken separately.
Some symmetries and, consequently, the conservation laws can be violated when information is

spread from the given space toanother. These violations are due to the fact that the real spaceis a
fiber bundle.
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PART ill

THEORY OF INTERACTIONS IN MATTER

11 GRAVITATIONAL
INTERACTION

1. The law of gravitation discovered by Newton is in good accordznce with the experimental
data on weak gravitational fields. Einstcin’s General Relativity (GR) broadened the possibilities
oi the theory of gravitation into the domain of strong fields. [1 stated the existence of relation be-
Iween the gravitational interaction and the space-time continuum properties. Yet, this relation
was not quite cieared up within the bounds of GR. In particular, the fact indicative of it is that in
GR the gravitational constant is introduced in the form of a postulate and cannot be in principle
calculated theoretically.

A new stepin the direction of the cognition of the gravitation nature is made within the bounds
of the new unified relativistic theory of the fundamental field (TFF). In [48—52 | it was shown
that the new theory of gravitation (for short we shall call it “the vacuum theory of gravitation”
(VTG)) for the first time allowed to calculate theoreticaliy the value of the gravitaiion constant
and io connect it with other global constants. The fundamental ideas of the new VTG and some of
its consequences are discussed in this book.

2. Gravitationin TFF in contrast to GR is considered not as manifestation of the individual in-
teraction between bodies (as the result of the space metrics change due to their masses) but it is
considered as the result of the change of the character of the interaction between the particle and
vacuum under the influence of another body.

We clear up how the vacuum surrounding pariicles acts upon them and how the appearance of
a third body tor third ones) affects this process.

The physical fundamentals of the vacuum theory of gravitation are the following. Since va-
cuum is the homogeneons space and the density of matter in it isconstant, then the equation (7.1)
is of the form

R = 4,80, aLn

where A, is the constant, the dimension of which is the reciprocal square of length. Thus, in va-
cunm the energy-momentum tensor T, differs from the metric tensor only by the constant
factor, i.e.
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*‘-v&fj =

B
-E%K T, (11.2)

It is easy to show that
-RJ'I ’r

e o (i1.3)
$x*R,’

.. cle
o(¥)
where mis the mass of two antiparticles constituting EPV; R, is the Schwarzschild spaere radius

for EPV of the nthvacuum; r = |7 | 15 the absolute value of the radius-vecior goirg from the zero
point to the proper space point.

It is clear that the constant A, in ¢ 11.1 ) and ( 11.2) may be only (zRk})", ie.
Ay = (wR})™' . And since
i ML 4

n 7= (11.4)

(4

then from (11.2) and (11.3) we nave:

ggg) g R (il.5

Vacuum exerts pressure upon any EP and EPV from all sides. Under existence of only free va-
cuum around a particle this pressure acts on any particle with the following force invariabie for
any particle:

Fy = (11,6}

nt o
£
2

L]
where e, = [“;i] is the elementary charge; gy is the vacuum dielectric constant
v

(gy, = 0.997 445); r,  is ihe vnit radius. The force F, is nol the result of eleciremagnetic inter-

action. Therefore, it reveals both between charged and neutral particles. The observable electric
& 5 ;

chargee,  is invariable due to the equality e2 = —=.InTFF therelation e, = %Eisinlcrpmlrd
) v v

as the physical invariant of vacuum which is not only the square of difference of fun-
damental charges but is the invariable value which is better to call the “moment of the cleaien-
tary energy”, i.e.

2 _ :
ey = Eyryn - tn

Inits turn, it should be considered as
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E, = Fyr, andey F,rk (11.8)

Fiun Viun
otherwise: F,is the elementary force which Fulfils work equal 1o £ at a distance of ihe unit length
4o - 1f at a distance r from a particle there is another one. the latter would screen that part of va-
cuwin which is “behind it” and is situated within the corporal angle 8. Since the force Fj acts
within the corporal aagle equal io 2, from which the screered cone is subtracted, it is clear that
ihe force of attraciioa arises between iwo particles which is equal to

é

Fyo= Fyo-. (119

This force is just the gravitatioral force. Conscquently, the following should be vaiid:

o hlz
f‘g =G Z FV?n (11.10)

Underinteraction of two particles the angular dimension of the “screen” depends bothcn dis-
tances and parameters of EPVs. Ii also depends on masses of both interacting particles. The cor-
porai zngle, under which two panicles with masses m, and m, mutually screen some pari of the

force Fy, , depends on the masses of the interacting particles and the vacuum pa~ameters in the
fallowing way:

(2) .2
(R Ry n,m
£ =4__£ag+l, (1.1

r "!V

where (R — R pis the difference of the radii; on these radii the subparticles of the proton-an-
iiproton vacuum oscillate; my 15 the total mass of two antiparticles constituting EPV of the
protcn-antiproton vacuum, i.e. equal to two masses of a protoa (antiprotor); a,is the metric coef-
ficientof the preton-antiproton vacuum, a,= 1.000 889 (s=e section 16). The reason for taking in-

toaccountin (11.11) only the parameters of proton-antiproton vacuumi is the following. The con-
centration of EPV's of any type of vacuum is determined by the simple expression:

|
2.3
8t 3

ny, = (11.12)
For the proton-antiproton vacuum it is equal to 1.545 4 - 10° ¢—and for the electron-positron
vacuum, the nearest to the former, ‘tis ten orders less. The concetration of EPVs of other types of
vacuum gecreases in the same sharp way, therefore, the main contribution to general vacuum pro-
perty is made by the preton-antipreton vacuuim (the firstone in Table 5.1) which is taken into ac-
countin (11.11). Other types of vacuum have the substantial influence only nnder the resonance
phenomenainit. Gravitation is an average effect and is not connected with resonance phenamena
in vacaur. From (11.10) taking intoaccount (11.11) we have:
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5 Fy (R - R

=g " (11.13)
£ hmv

The elementary force Fy is determined via the vacuum parameters as follows:

. 18 afic 4
iy _Ff_—_( 1"3(3”): (7(,, R, (11.14)
whemtp = -"—:—cis the Compton wavelength of a proton; R, is the Rydberg universal constant for

the infinitely great mass.

*1
_ %[ B RLe a1.18)

This formula for the graviiation constant was given by us [49  without its deduction and proof
that it is universa! and could be applied to any elementary particle. Taking into account the new
experimental values of the global constants [108 ] from (11.15) we obtain the following numerical
value for the gravitation constant:

G=6.67 254 939 7 10~ */gs® which, as previously, is in good correspondence with the ex-
perimentally found value [108 J:

G=6.67 259 (85) - 107" =(6.67 174 — 6.67 344) - 10~ 3/gs.
The accuracy of the former is some orders greater than that of the latter.

The obtained result is the following:

1. The theoretical value G can be considered as a forecast until new experimental values of it
are obtained.

2. The exactly expressed relation between the gravitation constant and other global constants
is stated, which is not given by any “habitual™ physical theory.

Itis often noted that numerical values and mutual consistence of global constants are not only
of fundamental value for modern science. Under the unexpected discovery of their new mutual re-
lations they can result in revision of the principles upon which our concepts of the physical picture
of regularities in natural phenomena are based. Therefore, there are reasons to consider that the
method of calculation of G, for the first time found theoretically, is indicative of serious possibi-
lities of the new theory of gravitation discussed here as well as of TFF on which it is based.

3. Attention should be paid to the following feature of ¥V TG: the gravitational forces arise only
as the result of screciing the vacuum tensions which always act upon any particle. Yet, under the
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accumulation of a very great number of particles in a small volume, the “forcing out” of a certain
part of EPVs and decrease of vacuum tension forces connected with it can occur.

Qut of this follows the conclusion: if concentration of particles in a given finite volume is near
to that of EPVs then the forces of gravitational interaction between them may very great-
ly decrease. So, under the concentration of particles in: the center of stars, approaching the value
of 10 ¢ =3, corresponding to the concentration of EPVs in the most dense proton-antiproton
vacuum, the forces of gravitational interaction would substantially decrease. [t would resultin the
mass defect and the energy release. This is one of the principal sources of the internal energy of
stars and planets.

Concentration of particles of the order of 10* ¢~ corresponds to the neutron stars. Qut of this
follows the conclusion that further compression of these stars may be apparently either im-
possible or for its reasoning would require a new concept of particles structure which is beyond
the bounds of TFF. Thus, we come to the conclusion that the origination of “black holes” in mac-
rocosm is impossible. This process is the leading phenomenon in microcosm but not in mac-
rocosm.

The mentioned above circumstance should be taken into account under the construction of
different variants of cosmological hypotheses on the origination of the entire observable Universe
from a certain very small volume, the radius of which is by far smaller than 10™*3c, where matter
of immense density is accumulated. Such phenomena cannot occur.

4.1t is widely known that, under certain assumptions, by means of GR considered as gravi-
tation theory, it is possible to come to the hypothesis on the expanding Universe, which, at least
qualitatively, would explain the metagalactic red shift and would be a stimulus for constructing a
number of interesting cosmological hypotheses. Therefore, it seems to be important toclear up
what possibilities VTG has, according to the above-mentioned cosmological problems.

In this connection it should be noted that the equation for vacuum (11.1), under the same as-
sumptions as in GR, allows the non-stationary solutions, witnessing the expansion (or compres-
sion} of the Universe filled up with physical vacuum. Though VTG allows the expansion (or
compression) of the Universe, it does not demand it. Therefore, itis of interest toclear up whether
additional possibilities follow from thc new theory of gravitation as well.

5. It turned out that VTG predicts a new phenomenon which should reveal in vacuum. This
phenomenon is probably suitable to be called “gravitational viscosity”, which should accompany
the process of photons propagation in vacuum. To get the essence of this phenomenon, the concept
of the photons origination, formulated in TFF [7 ], should be reminded to the reader.

According to TFF, propagation of light is considered as the displacement of excitation process
of elementary particles of vacuum, and the birth of any photon is considered as an elementary act
of excitation of EPV. As it was mentioned above, in TFF the non-excited EPVs are unobservable
in macrocosm, they are situated in the “black hole”. When EPYV is excited, a pair of virtual an-
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tiparticles appears, which is just taken as a photon, provided this pair is not under the action of the
ficld continuously supporting the excitation of this pair, but is subjected to the action of an aiter-
nating or impulse field. In the last case the excitation process would propagate from one EPV to
another, which would be taken as the propagation of light. Thus, the propagation of light is ac-
companied by the process of sequential excitation of vacuum particles, i.e. by birth and death of
photons, under the same quantity of them in a free vacuum. This process leads to the irretrievable
loss of very small but finite energy to overcome gravitational forces under any act of EPV excita-
tion.

Such gravitational viscosity accompanying light propagation process in vacuum can be calcu -
lated in TFF. If the initial energy of a photon is & v, , and the energy loss due to the gravitational

viscosity per second is E, then for the time ¢ the photon energy would decrease and become equal
to

t
hv=hy, - [Edt, (11.16)
[]
from where
t
; JEdt
- I
i R o (1117

_rElds
L . (11.18)
; P 1+ rRE .

a

Considering, as it is usually adopted, that the metagalactic red shift is duc to the Doppler ef-
fectonly, for the wavelength change from A to A we obtain the following expression:
i H
u=Hns;1;=l+—cﬂs. (119

where v is the velocity of the light source; s is the distance from it; H; is the Hubble parameter; ¢
is the speed of light.

Itis easy tosee that the expressions (11.18) and (11.19) coincide. To determine which part of
the observed red shift should be attributed o the Doppler effect and which part of it is due to the
gravitational viscosity,it is necessary to determine the value of the parameter H from (11.1 8):
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5
J B ds
PR —
H, = (11.20y
To determine this paramecter we recollect that in TFF a particle and an antiparticle, moving apart

under excitation toa certain distance x; , spend the energy E, on overcoming the gravitational vis-
cosity forces f, :

Cm
R/ r ﬂ:)
where m is the mass of the virtual particle and antiparticle constituting EPV; R is the radius of the
EPYV structure almost coinciding with the Schwarzschild sphere radius R, ; B = %is the velocity

By o= mgrad- (1121

of oscillation of EPV structure elements, which is observable only in the particular coordinate fra-
meof EPY and only inside the Schwarzschild sphere. The energy which a photon spends irretrie-
vably on overcoming gravitational forces should be determined only when the virtual antiparticles
are “moving apart” from R tv x,, because the direct informatioa from the processes occurring in-
side the Schwarzschild sphere does not get into macrocosm.

So, for the unknowa energy loss we obtain:

— m
E = g f)fgrad R dr, (11.22)
or
2
E = —@m [ S 11.23
4 meR (1 "JBIJ [ xneR/‘o" : 2

In TFF the physical meaning of the fact that the ratio of pholon energy toits frequency is equal
to the Plank constant in all cases of energy propagation in macrocosm consists of the following
simple equality for each photon:

Ry S (11.24)
Then (11.23) takes the form:

S Gm® ~ _ R
E 2xeR (1 - B4 [l “Rzm) : (11.25

In TFF the cunstants R and (1 — B) are expressed via “external” (experimentally observed)
parameters of particles with the accuracy up to the factor equal approx to 1.02. This allows to ob-
tain the following vaiue for the Hubble parameter characterizing the red shift due to gravitational
viscusity:
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% chta 5

3vV2agmic? R
= '_r [1 = ;:F;r_'"l'] ds, (11.26)

where m,_ is the electron mass; &= 7.297 - 1073 is the fine structure constant. Substituting the
known values into (11.26) we obtain:

-8 5
H = 5-10
0 5

(1 2 ] ds . (11.27)
]

- R

Aye
The dependence of Hon A, changing with thechange of s, is not substantial if A >> R . Neglecting
this dependence we obtain:

Hy=5.10""s7", (11.28)

The theoretically found value of H,, does not completely correspond to the experimental value
of the Hubble parameter adoptzd now, which characterizes the Doppler red shift. The experi-
mental value of H, adopted previousiy, is greater than the theoretical cne mentioned above, and
the experimental value adopted recently [108 1, on the contrary, is less. Taking into considera-
tion the well-known uncertainty in the estimation of the metagalactic distances we can state that
tke value of the Hubble parameter found from the theoretical calculation is sufficientiy close to the
observed one.

The increase of the accuracy of the experimental estimation of f will shew what is the con-
tribution of gravitational viscosity of photons in vacuum to the obseived red shift. If in future it
turnsout that the value H is less than the theoretical one then it can mean, in particular, that now
the Universe is not expandirg bui is compressirg. In any case, gravitational viscosity makes such
substantiai contribution to the observed red shift that it is impossible to neglect it, as it took piace
until now.

Itseems reasonable to attract the reader’s attention to the following fact. Up to now, under the
interpretation of the red shift only, in accordance with the hypothesis of the expanding Universe
within the bounds of GR, the value of //, has not been determined theoretically. At the same time
the contribution of the gravitational viscosity to the metagaiactic red shift turned out to be estiina-
ted theoretically not only qualitatively but quantitatively, the satisfactory correspondence to the
observations being not only by the order of the values but with the accuracy comparable with that
of the metagalactic distance measurement.

We consider that this fact can also be interpreted as the confirmation of VTG and TFF.
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1 FEATURES OF FIELD INTERACTIONS
OF PARTICLES *’

12.1. In TFF the consideration of particles interaction acquires some peculiar features in con-
nection with their existence in the fiber bundle. The principal feature consists in the fact that (he
dimensions, we ascribe to some or other parameters (characteristics) of the particles, can not be
the same for all fibers of the enclosing space. Now we ascribe the universal dimensions to elemen-
tary particles. These dimensions are considered to hold in any space. For example, if we measure
mass in grams, wc believe that this dimension holds regardless of the type of the space in which
we observe the particles interaction: the Euclidian, two-dimensional, cne-dimznsional, four-di-
mensional (pseudo-Euclidian) spaces, eic. We consider that in all cases mass should be measured
in grams.

In fact, this is completely unlawful. We have no reasons to consider that the dimension of some
or other characteristics of an elementary particle is the same in any fiber of the fiber bundle, re-
gardless of the properties and dimension of such fiber. The postulate about the universaiity of
physical dimensions and applicability of these concepts to any space results, as itis known, in the
difficulties and internal contradictions. So, for example, if we spread the concept of the mass
measured in grams over the point spaces whose volumes are equal to zero, then we come to diver-
gencies and have to assign the infinitely great density to the objects situated in the point space
when the object has finite mass. Other internal contradictions arise as well. Yet, they did noten-
courage physicists to revise this postulate. In the preface we mentioned that the system of units

# = ¢ = | was not used in the book. We noted that it was due to the necessity 1o retain the phy-
sical meaming. Mow it is quite the time to explain this statement.

Inthesystemofunitsh = ¢ = 1all physical values have dimension of the length raised to dif-
ferent power. For example, mass has dimension not in gram but in centimeter raised to the minus
first power (of course, it may be if not centimeter then meter, but it is always the length dimen-
sion). Besides this system of units the systzm offered by Plank is also used in physics, where the
third valus (the gravitational constant) has also value of one, i.e. all three values are equal to one.
In this system of units all physical values have the zero dimension. We cannot ascribe any con-
cepts which we use in the laboratory three-dimensional Euclidian space to them: neither the con-
cept of ihe force in the usnal units. nor the concept of the mass in the usual units, nor that of the
length, etc. The essence of these physical values is retained, but all of them are dimensionless.

Usually both systems of units mentioned above are used in the calculation only as a way tosa-
ve the volume of the work, to cut down the number of the notations and equations and to simplify

»
) Zapatrin RR and Chuklina T.1. 1ook part in the mathematical wreatise of this section.



the calculations. Thus, at first we transform the equation intoone of the mentioged above systemns
of units, which we consider to be the conventional one, then after the result is obtained we
transform conventional units into usual and obtain the final result. If we use this mode in one spa-
ce,then such way is quite lawful. Yet, in the fiber bundle such liberty is inadmissible.

Both above-mentioned systems appeared in physics noi by chanceand they have agreatreal
mathematical and physical meaning but not a foimal one. It means the following. The systems cf
units which we usually use, for example, the system of units in which all equations in this book are
written (the physical system of units: ¢, g, §), are completely applicable only in ihe three-dimen--
sional Euclidian space. It is importani to note that physica! system of units is completely mutual-
consistent and the principal values do not require additional coefficients. If we pass tc a space of
some different dimension (we remind that in TFF the non-Euclidian space is the reality but not
the formality), then in the real non-Euclidian spaces other dimensions should be used.

The dimension theory in physics of multidimensional fibrated spaces yet needs its creation
and development. In TFF only ihe first steps are taken in this direction. These first sieps are as
foliows: if the space where the processes occur with orie or anoiher microobject is in fact the two-
dimensicnal or linear, or the point one, then we have to revise our concept of dimensions. [t has
been already mentioned in the book that the fundamental field is situated in the linear space, i.e.
the string. In the linear space only that system of units can be used where the Plank constant and
thie speed of light are equal to one and all physical values have the length dimension raised to one
oranother power. They have this dimension indeed but not formally, as a way cf calculation with
subsequent conversion into the “regular dimension”.

In the case when the space in question is the point space the physical values in it can be con-
sidered only if they have the zero dimension.

12.2. We now prove that for =0 the dimension of any physical value is equal toone. The main
feature of the discrete point space is the fact that it allows any integrations; there are no non-pro-
perintegrals there. If usually [170] the non-properintegral on a measure is determined 2s the in-
tegrals limit on the narrowing neighbourhood of a given point then in the discr=te case this
procedure becomes unnecessary; here the point itself is its neighbourhood.

So, the difference of the case d = 0 from others consists in the fact that there is one-point
neighbourhood consisting of the only point. Consequently, the integration on such neighbour-
hood is simply the determination of the value of the integrand in the point:

JF(¥)dx = F(x). (az.n
0"0

Thecquation (12.1) is not a postulate but the consequence of the discreteness of the topology
expressed in the form:

t'J‘D = {x,}
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Another consequence follows from this fact. Under the mapping of a certain value from the
continuous space onto the discrete one all functions, both integrable and non-integrable pass into
those which are being summed up. Therefore, under consideration of the prototypes, even of the
correctly determined expressions, it is necessary to check their integrability again.

Besides, since under d=0any subset is measurable, we can take the integrals over any subsets
of th= phase space. In an ordinary case the quantum mechanics forbids to do it due to the uncer-
t2inty principle. For exampie, we can not write the following expression:

A=x+p, (12.2)

where xis the coordinate; p is the momentum of the same object, because x and p do not exist si-
multaneously. This agrees with the structure of the measurability (the Borel sets) in the spaces

R4 under d > 0. But we have d = 0, and thus no restrictions on summing ap. If any two values can
be summed up,it means that their dimensions are the same.

So, if d=0, then all values should inevitably have the same dimension. But it is not proved yet
that the dimension is equal to one, i.e. that the system of units should be just of the Plank type.

To prove it we consider the deterministic motion of an object. Determinism means that all its
characteristics are connected with a functional (but not statistic) relation. Take any characteris-
tic, for example, the coordinate x. Let its dimension be [x . Since all relations are functional, then
for any value A we can write the following:

A=f, (). (12.3)
Yet, since the dimensions of all values are the same, we have:
(A]=Ix 1 (12.4)

We expand (12.3) into series on the x powers:
A=gtextet+.. v ..., (12.5
wherec,,...,c, arecertain constant coefficients. These coefficients have the same dimension [x ].
We pass from the equality of the values in (12.5) to that of the dimensions:

ixI=[x)+[x P+lx P+..+[x 1"+, (12.6)

Note: the indices of the power in (12.6) are greater than those in (12.5) by one as the dimension of coef -
ficients s taken into account.

Then from (12.6) it follows:

[x =[x P=..=[x]"=_.. (12.7)
Consequently, [x ]=1 is a dimensionless value, which was to be proved.
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12 3. We now consider the linear space (¢ =1).

Under d=1 thesituation is cardinally different ir comparison with that wnen d =0. So, the no-
tion of th2 measurability appears, i.e. the integral can be 1aken not on any subset but orly on the
measurable one. The structure of the measurability, i.e. the Borel sn:ts,is described by wneans of
the standard Carateodori scheme [171 ]. [u short this scheme consists of the foliowirg: the mea-
surable sets are obtained as all sorts of unions, intersections and supplements of the semi-inter-
vals of the [a, o) kind, where

la,b) ={xe R 'asx<b}. (12.8)

Therefore, when dealing with integrals in onz-dimensionai space it is sufficient to prove tne
corresponding staiements for the integrals of the type

b
J7(x) dx.
a
In the one-dimensional case the Gauss theorem passes into the Newion-Leibniz formula:
b
Jfixydx = F (&) - F(a), (12.9;
a

which is the “bridge” connecting the cases d=0and d = 1. In the case 4 =0 there is no integration
at ali, there is summing up. From this it follows that all values should have the same dimens on.
Under d=1 the situation is different. There is the integration. Consequently, there must be at
least two dimensions, because under the integration (hz dimension is multiptied by . Ccnse-
guently, there are two dimensicns. The first one is initial and discrete. [tis without fail 1L P=1.
Yet, there mast be the second dimension, namely (he enc on which the integration is possible.
This is the dimension {x ]= L. Formaily the second dimension (anv but oae) is not necessartiv
that of the length but in the lincar space it is naturai to take if as the leagth,

The transition from the system of unitsh = ¢ = lorf = ¢ = G = i should be considered
as the incde of mapping of the dimensions existing in the point spaces and the lincar ones onto the
Euclidian (or pseudo-Euclidian or nseudo-Riemannian) space and vice versa. Otherwise, the
procedure of the mapping of the nhysical processes from the space with =3 onto the linear o the
point space and vice versa is zlways accompanied by the change of the physical values dirnension.
Itis nol a formal change of dimension but a real one.

[t is quite clear that the approach to the dimensions and the dimensions system discussed in
this section would cardinally influence the methods of calculation of particles interaciion in dif-
ferent subspaces and description of the results of the manping of such intaraction onto different
subspaces. Since ibe discussion of the new theory of dimensicns necessary for description of rea-
tures of calcuiation in TFF is bevond the scope of this bock, the questions related to the sub-
stantial description of particles interaction are not detailed here so as they shoula be.



1 CALCULATION
OF PARTICLES PRECESSION
!N THE CALCULATION SUBSPACE

13.1,
The principai formulae
and the ::alcu!atiun scheme )

The angular velocity of the precession is deiermined by the formuia:
0 =-4[-3+ 3680 aa.n
=4 [ 5+ 25 ] ,

where x=(x;, x,, x,} = (x, y, z) are the Cartesian coordinates in the space-time; P=x+y+23
is the proper moment of momentum of the source.
The metrics used to find the vector 5 length is of the following form:

dst = — [1- 2 0(:{,—}};!2’ - [4%5"-:; +0{$]]drd§ +

e b ; (13.2)
+ [+ 55 by + 0(;]Jdr‘dx~,

wherer = V& + ? + 2 Mis the proper mass of the source; sfare the components of the pro-
per moment of momentum of the source; g ikl is the completely antisymmetrical tensor.

We now calculaie s for the maltirotaior-source.

1) We introduce the following notations: n, is the number of the particles of the muliirotator-
souice; m, is the inass of its particie; w, is the angalar velocity of the particle rotation.

2) We choose the coordinate frame (x, y, z) so thai tlie multirotater would rotate in the plane
(x, y) and its rotation axis would be directed along the zaxis.

3) The moment of momentum s is equal to
s=Ja, (i3.3
wherewis the angularvelocity, i.e.w = w,; Jis the total moment of the inertia of the multirotator.

4) The totai moment of the inertia J is equal to the sum of the moments of the components, i.e.
J = X J;.Yet themultirotator consists of n_identical particles, therefore
f=nJt (13.4;

£ i

where J is the moment of the inertia of the point:

Jy = my R: : (13.5
R, i5 the radivs of the multirntator-source orbit

*) In this scction the calculation was carmed oot within the bounds of GR.
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5) Substitute (13.5) into (13.4}:
J’=n51;=u;msR32, (13 6)
and (13.6) into (13.3):
s=.fr.o=n‘m5Rims. (137

6) The vector 5 is directed along the vector of the angular velocity. Therefore, it has the fol-
lowing components:

st=.§‘1 =0,
s¥ =8 =0, (13.8
ls“w$’=:1$m,R§ms.

This is thai very set of the values s¥which is used in (13.2) in the second term.
We calculate O in the general form. The general formula for £2 in the vector form: is given by
(13 13

'gj,:i[_gllﬁ.%:ﬂ]_

3

Write its components:

“v’fﬁ[ 6;+ﬂ5_2Ll (13.9)
0, = ’[ &+ 3’—‘%‘—&] (12.10)
ﬂz=${_52+3_§:§.11_z]' (1314

where x, y, z are the coordinates of the multirotator-target which is subjected to the action of the
multirotator-source. The values of the latter have index s.
We calculate the scalar product:

(3x)=xs*+ys?+zs*=nm R wz, (13.42)

since, according to (13.8), s*=¢¥=0. Now we substitute (13.8) and (12.12) iate (13.9)-—(13.1 1}:

a, =33 (13.13)
L

- B \

a, =22, (13.14;

= 5zl' 1 .2 2 ¢ a

i, = —rs—llz —x" =y ] 113.15



V/e return fo the spherical coordinates:

x = rcocB cosg ;

¥ = rcose sing ; (13.16)
2 = rsico .
G - obcombcony a3.17
Q, = 3:!n8£;st’siny_ $: (13.18)
P st
Q=5 [3sine - 1]. (13.19)

These are the values of all comporents of ithe angular velocity of the precession
f1=fisr8). (13.20)
Transforming (13.17)—(13.19) we obtain:

3 sin 26

i1, = A Scose; (13.21)
_ 3sin28

ﬂy = —;—, sing ; (13.22)

a,-=- % (3 + cos26) . (13.23)

Thevalues 0, ,ﬂy {1, arethecomponenis of thevector N in the Cartesian coordinate frame. Cal-
culate the absclute vaiue of 101:
Q= 10k !.".F+.('lz+.{'!2
2
= r—,—] [51:13 26 cos’ + sin® 26 sin%p + {l + cos ZHJ }= (13.24)
'\
|

3s
- (3]
\

[sm 26+i+coslﬂ+cos‘281 —[ ][ +m26]

Stm.e the precessicn axis is in the piane (x, y}, the precession vaiue is the angle 8 of declina-
tioni of the vector () from the plane (x, y). i.e.

n=2 (13.25)

i . 2, _
{f the Jacobi eliiptic function of the 1-st type on modulus k = -5—isnot taken inlo account, then

(dﬁ] |— + cos2h = —u‘l k* dt . Inourconcretecase k * = const
G) /4 4 cos 20
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Now we consider the integrai f;,sn 4 = »

=27
+cos20 3V 1-3/9sn"0

¥ V1 :‘ T o is the elliptic integral of the first kind in the Legendre form. It is denoted by
- sin"x
F={k, x).So,

e i od (13.26
‘rmcnszﬂ 3P["’ .6]= AR
and (15.25) becomes

\ 2
F[Zfi,s = %k! = (%J it, 13.27)

i.e. the dependence of the time on the precession angle does exist:

1= (%)zﬁr[’f,a]. (13.28)

x

Tofind thedependence 8 (¢ ),the function Fshould be reversed. It gives the Jacobi elliptic fun-
ction.

We introduce the notation:

e et ).
Then the Jacobi function is snu=sing; it means:
8 = arcsin (snu ) , (13.29)
and F [2;5 ,B] = (%]z:i-! = U,
Otherwise
2
8§ = arcsin [sn {(%] ﬁr)] , (13.30)

where sn is the Jacobi elliptic function of the first kind on the modulus &k = 2—3@ . This is the

exact precession equation in its general form.
Now we obtain the expression for the precession angular velocity from (13.24):

sin13=snr§-2r‘-f andcos20 = 1 — 2sn? [2 3 ¢]
)] macom =1 - 2[5

j.c.
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=38 79 942725 ,\\!72
n 2’3{4 2sn ('M’I]) i (13.31)
where £ is thie metrics dsz-gm dx dx™; ris the radius-vector of the point; t is the time.

132
The apparent formulae

The internal rotater in the field of the external one
In this case the constant s becomes

s=nm .Rf' o, i13.32)

where n, is the nuraber of the particles on the external ring; m, 1s iiic mass; w, is the angular ve-
locity; R, is the radius of the external ring.

Substituting (13.32) into (13.31) we obtain:
12
A_":i‘l;l_L __23 9ﬂ_i_ig] . (13.33)
&

The external rotater in the field of the internal ona

Herc the formula for (1 is obtained by the exchange of the lower indices 1« 2:

Lz
g nymy Rywy 1)
)

3 w.,

b= 2R

¥ 2
i 2sn F

1

On the maximal pracession angle
This angle changes within the bounds of — %and + %for any values s and r because

G 5 Y
lE(—®, +w)=2-=1E (- + =sn(==tYe[-1,+1].
( ) il (e, + ) (4.,-3 ) [ & 1

8 = arcsin { sn (%-‘%r)) = [-;—+§]
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13.3.
Reduction to ordinary dimension

Wensed G=c=1 system of uniis. In ordinary units the ratio m/ ris not dimensionless and sub-
stitution is necessary

Gm

S (13.34)
and then
3Gn,m R 9 2 ,9Gmm Rlo | 1n
= —1_1 1 - - B ok o ot | . : g
M 282 o [3 -2 ( Prp 1)] ; (13.35)
2
_3GmmR; 9 2 (9Cmm, Row, . ln
Q, 1R w0y [¢ 2sn ( iRE f)J , {13.36)

where G is the gravitational constant; ¢ is the velocity of light.

Specification of the concept of time

The matter is in the fact that together with other coordinates in the formulz for the interval
there is the time. Therefore, when the external rotator is considered to give the metrics, it gives
not only the spatial components of the metrics but the time component as well. Thus, it follows
from nowhere that the time in the formula for (3, is the same as that in the formula for ;. The
former and the laiter can be supposed to be equal to each other. Yet, we should keep in mind that
we made this assumption, otherwise instead of ?in the formulae (13.35) and (13.36) we should
write ¢, and t,, respectively.

Now we clarify the consequences following from the assumption that the time factor is equal to
the period. First we calculate its value.

In the case (13.35) we have the following expressicn for the period T :

9Gn, m R BxR)c

ST 2y Ty = — 2, (13.37)
4R3C 9Gn, m R w,
In the same way we obtain for T', :

9G R? 8a Rt

—i’lf;???i%'rz=2-.r= AR LA (13.38)
4 R, 9Gm, my R w,

Now in (13.35) we assume that t=T,. In this case the elliptic sine turns into zero and then

2
_ 3G n m Ry

9} b — 6y
'|'.= I eyl !
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In the analogous way we obtain:

3Gn, flﬂzi
Q = 3 (13.39)
2 [, =T, 2 RIJ 7
Now we consider the ratio of the precession periods. We denote it by k- :
2 5 5
oo B mmBe, mme R mom e (R 13.40)
T T, ny "Hgfml Rf nyom o Ry nom o |R
If we introduce the notations
e Mo gD
k"_uz‘k'ﬂ_mz'km—w;’kk_kz' (13.41)
then (13.40) takes the simple form:
TR | S
T *H*Pﬂ*«a *i '
or
by ki kg k=1 (13.42)

This isthe general formula valid for any set of parameters. Otherwise, (13.42) means such depen-
dence:

|
|
I

Consequences following from the equality: 0, = 0,

If we require the literal equality of instantaneous velocities,we obtain a cumbersome expres-
sion:

z 12
9 i 9Gny my Ry o
— Z &R 3 fl
Q 3G m R w R i s
n = fad B M Ry T _
=g == e mKa z iz =1 e
H 2" M2 Fiyu ‘?Gﬁms.ﬁlwi
—=2sn L.
4 R e

The expression (13.43) is the product of two fractions: the first fraction does not depend on £,
the second one depends on . Yet, their product does not depend on t. The conclusion is that the
sccond fraction should not depend on time either. 1t means that from the assumption 3} = 1),
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besides the algebraic consequences (13.44), the requirement of a certain relation between ¢, and
t,follows. In any case if T, = T, thent = t, either.

First we consider the algebraic consequences of (13.43):

2 3 5
nom R, w, RI nom oo Ri 5
_———=l=m_t—— || =1l=k k k kp=1, (13.44)
R:ﬂr-n1 R:wt Hy my @y | Ry U NC R
where

n " w R

. - 4 - 4 1

ku=i'km_;.-|_;‘kw_u_:‘k}2t}z_2‘ (13.45)

Now we obtain the relation between ¢, and ¢, in the apparent form from (13.43):

17
2

9 _ i 9Gn, m, le!f

4 4R :

]
2
2-2“.1 ‘JG:lzmszwzr
3 s 1
1 €
\

We derive the relation between the constant A and other constants of (13.37)—(13.38):

=1.

5

k_r=—- N

1L I I 1
2 s 1 B Bl e (13.46)
T, 9G n, m, RT w, 8 Rf = nyom; o Rt} k, k, k, k:

T, _BR G mBe, Eﬁw_[R

The formula (13.46) is a general one, yet we compare it with (13.44) characterizing our case
1, = 0,.ltcan be rewritien as

1 -
rr = ] 'kT =1].

Andso,ifQ = Q,,then

1) from (13.44) it follows that k, &k k k}’z =1.

2)t,= £ 1, ,i.e. thetime in both rotators flows with the same velocity but probably in different
directions.
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13.4.
How the calculation changes in
the case of a strong field
We use the formula valid in a general case but not only in the case of a weak field:
ﬁ = | an
£i‘}".£n = r:'!.ﬁ‘ (13.47
where Fﬁ: gis the Christoffel symbol of the first kind; ~means the proper reference frame. The-

refore, the coefficients F,.A}.: g have to be calculated:

1

ey = 5 (—8hyi + Bt + &) - (13.48)

Only ij,0 are of interest for us, therefore,

Troa=1(= J .4
=3l gm5+35?_?+gmf~l (13.49)
Now we consider the case of a strong field:

ds’ = godic)® + g, dr' + g, d8" + g do* + g ded! (13.50)

2
F

where g, = | —-*:,—;r‘=2m%;p’=ﬁ+a’cos’ﬂ;a=%: M is the moment of the

source rotation; m is the mass,

2mGr
=] s 2

2o p s e o (13.5D

2

P .
& = 3

2 mGr | M

Azr’—rgr+a=r’—T’15+m?€,; (13.52)
&y = -0 (13.53)

. = rorat 5
g, = - |Fr+d+ -ip,— sin’@ ; (13.54)

K

By = -‘p,—sma. (13.55)

Now we consider more attentively the formula (13.49). The first term contains the derivatives
I B vet, nol a single coefficient g, in (13.50) — (13.55) depends on ¢, therefore, (13.49)

act 5y

can be simplified:
POPUPR I 5 .
F77.6= 5 8500+ 85 1)
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And since gis symmetrical, then

s = 1
Tr76=3Gp 0 %70 (13.56)
Among the coefficientsof the typeg g 7. 5:5‘;-«):'|I;.«g‘,3 is not equal to zero, therefore, among the in-
dices i f\at least one should be equal to 3. And so:

e N R e
Fiso = 38m1 = 75 8n = 35, @gSIn6 5
. 2 : (13.57
_an sin'A a4 _ Ersm‘ﬂ‘ . o1+ a'cos’d — r(2r) ¥ ar.sm}ﬂ g y
2 o 4 g'cosd 2 v 2 '
2
1 | @ arrsin’® a4 sin’0
Too = 5802 =28 7 "7 By s
(13.58)

_ Ty 2%inf cosd p' + sin'8 2a” cosd
2 4
]

L 1—;} S (p* + o sin') sin26 ;

d
Lip = Boss T Bp s T 0.

Since 716 = ['pp g, all the non-zero coefficients of connectivity are calculated. They are the

following:
arsin® pt_ 27

Ciso = Tao = '_Lf_' : E’T i (13.59)
arr_sin26 52 4 .t gine

Fan = FPyg = —45—- EZSAL, (13.60)

P

Consequently, the angular velocity vector 0! has two non-zero components: Q' = | B
Q= [ya-And Q' = 0.Q'is the radial component of the precession vector; £} is the 8-compo-
nent of the precession vector,

13.5.
Calculation of precession vector components
in an apparent way

The =xpresssion for 0" is given by the following formula:

arr sin2® 54 g7 Gind
o B = __.2_____2__"‘_&9; (13.61)
n
T 2,
= me rH_ e
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=77 + a cos’e.
The parameter ais calculated in the following way:
M= ngm R,w, (13.62)

Here m is meant as nm, , where n, is the number of the particles of the rotator-source; m is the
mass; w, is the angular velocity; R, is the radius.

Substitute them into the expression for a:

M 2
@ =1 R
me' o ~a=-t (13.63)
M= .--1“:1-1,:‘2I wgim = ngm,
Now obtain the expression for r:
rg = 2"_: _ 2"5‘:'33 . (13.64)
c [
P+ a*sin’® = P + a’cos’® + a’'sin®® =~ 4+ . (13.65)
Substitute (13.63) —(13.65) into (13.61):
le "
2 5 5
. ln’msR:m,G rsin28 1| r+d G nsm‘nu‘R: in2 " +[ }
=__c3_‘_2_“p—z' pz =';' l rSII'lB
r }
l
Ng My sRs A +Rs“’s 1 G s wg
= 52 Grsin2e +ﬁc’ = iy op RS2 #3in20 —g—gi—tomy ””. o - (13.66)
Now we obtain the 2nalogous appareat formula for the other component, i.e. (17 :
in 2 _ 52
Q=T = 22 (13.67)
> - P
We simplify the expression p* — 27*:
P -27=r +dcos’®— 27 =a'cos’d ~- 1, (13.68)

and substitute (13.63), (13.64), (13.68) into (13.67):
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R o
s%s 2. 3
v R; w ngmg G sin® Tm 0-r n’msa,R:_ G sin'® ) R:t.l:_ cas8 - i’
¢ é {4 o ? é (R g cos’® + Fey’
s s
'—';z'—- mlo + r1]
2 oodp - A2
s 1 G 5 ﬂl’ cos re
g mgwg Ry~ sin 0 (Rl cw®+ 70y (13.69)
Thus we can write:
g wg Ry Esiw 2r cos8 (‘F‘ "’: + 'J":]'
& ﬁ sin@ (R; w; cos’® — Fic’)| . (13.70)

0

The formula is rather complicated. Yet, the fact that {3’ = 0 corroborates it, i.e. the precession
has no g-component but has only the radial component and 8-component.

Now we calculate the absolute value of the precession angular velocity. For this aim we calcu-
late the absolute value of the vector in brackets of the above-mentioned formula. We denote this
value by A,.

Since the length of the arbitrary vector [1 ] written in the polar coordinates is equal to

<
Va + 7 (8 + c’cos’s) , then

w; + ) + Fsin’ (R} w} cos™® — AcY) =

3

>
]

' = 47 cos™e (R}

]
=

*cos™0 (4 (R] wy + Pc?) + 1876 (R w) cos™® — ) | =

>
L}

rcosf V4 (R] ; + r°c’)’ + 1278 (R w; cos’® — 7c) . (13.71)

Now multiplying (13.71) by the factor from (13.70) we obtain the apparent expression for the
precession angular velocity:

ng g Ry o r sin® cosd

I = —————— V4 (Rl w] + 7c) + 1278 (R wicos® - r'ic)*. (13.72)
(R cos8+rc)

To obtain the concrete formulae for the external rotator in the field of the internal one it is neces-
sary tosubstitute index 2 for sand R, forr, and for the internal rotator in the field of the external
ene tosubstitute index | for sand R, forr.

For that purpose the following equation should be solved:

€, sinl -
1 I.i,\!n + c',COSiﬁ - ) wge, (13.73)
dar 4 2 3

(e cos’d +0))




wherec, = % g My @ Ri % r = const (note: r=const because we consider notan arbitrary mo-

tion bui the rotator);

¢, = Riw, =const;c, = r'c = constjc, =4 (¢, + c;).



1 FEATURES OF FUNDAMENTON
STRUCTURE IN TFF

14.1.
Motion of fundamenton in 35S

On the surface of the torus there is a kind of psendo-Riemannian geometry, tne interval
equation of which is of the following form:

ds? = &'@det — Ride® — (R, + R, rosh)® do® (14.1
wheree” = £, 15 the time component of the metric tensor,
cdt = dx, ;de = dx, ;dp = dx,;8, = R2; 8, = (R, + R, cost)*.

We find the relation between the parameters for the object moving on the torus surface along
the n-coil screw line which is the geodetic in this geometry.

Solving the equation of the geodetic
#erelal=0 (4.2
{where the derivative is taken with respect to the affined paraineter of the length dimension /),
we find the expressions for the principal geometric parameters:

!

3
- * _ . (14.3)
v (R, + chosi?}z
" nl
g = 7—'—2: (14.4)
(R} + R,cosb)
e = ﬂocdi:-: i14.5)
a
#=ne,

where ip 1 By are the constants of integration.
It turns out that along the geodetic the following value is constant:
KZ R?
(Rf - T’]ﬂ + 2R R siné + =2 sin26 — nl ¢, = const (14.6;
Forgou we have:

r 2 2 221"
e i "v '6u L et LRk

(14.7)
_"RI + '?_ecnst:}__\ (R + k,.,c-.\s!’}z .'E |
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where s / I} s the constant of integration.
For the velocity of motion along the geodetic we have:
nfye &2 iRy
v =
(R, + Rycosf)

(148)
ETS

From {14.7) and (14.8), under the condition that the constant of integration s / Iﬁz = 0, we ob-
tain:

1m
(R, + Rycos e)’]

v=c=cons! (14.9)

under all angles 6 aud ¢ and all values of the torus dimensional parameters Ry, R,, and irrespec-
tive of the number of the coils n and the values of the constants of integration .fw and B,.

The existence of the invariable velocity of motion alung the geodetic in the geometry in ques-
tion and its equality to the “velocity of light” in (14.9) is rather a noteworthy fact.

Asitis known, the invariability of c¢is postulated in SR and this postulaie in this quality is kept
in all relativistic theories. The first step is nade here 1o the substantiation of this postulate and to
its replacement by the theorem within the bounds of TFF. The result of {14.9) is obtained under
s/ -"33 — 0 which corresponds tc R, — = and means in fact that it is valid only outside the finite

surface of the torus in the external space concerning this surface. To determine the velocity of mo-
tion just on the torus surface of a finite dimension it is necessary to determine the course of time
onit.

Yet, the problem of time in this geometry needs special investigation. There are reasons to
suppose that within the bounds of this geometry the time is not the notion usual for us, with the
value always flowing in one direction, Here the tirne increases from 0 to T/ 2 per turn with respect
totheangie 6 and afterwards it decreases up loQ again. Mind, that on the torus surface of the finite
dimension the velocity of motion is equai to nfic > ¢. The charge moving on this surface is the
tachyon.

Itisimportant tomind that the mapping of the velocities and time component of the metric ten-
sor g, from 355 onto 8S (3 — 2), 255, 88 (2 — 1) and 158 is possible under the condition that
these values in these subspaces become invariable with respect to the time peculiar to the cor-
responding subspaces. For this aim i1 is not necessary to redefine the interpretation of time as
above, it is only n=cessary to set the corresponding law of mapping.

Thus, we obtain the coordination of fundamgnton motion on the torus surface and the des-
cription of EP in different subspaces.

142,
Dynamics of fundamenton motion and calculation of its parameters

Note, that on ihe torus surface TL in the pseudo-Riemannian geometry for the Einstein ten-
sor

02



Fig. 141 Formation (scheme) of fundamenton as the basic s space cell; a -— EPY, b — BEP

. -
G, =R, - 3 RE (14.10)

results in the following values of the Einstein tensor componeris:

8 1l n, oz
GY = cos@  , ~1 v sinf Y L (4.1

0 = By (R, + Ryeosd) ' 01 T T IR (R, ¥ Rycus) * U2 P

Bl
=]
=)



The interpretation of the found relation between the parameters in kinematics of the fundamen-
ton motion and of the fact that on the torus surface in the abeve-mentioned geometry there is the
screw gendetic, leads to a very interesting result. Most probabiy, the only possibility to explain
thz dynamics of the fundamentoi motion, whose kinematics corresponds to the geodeticon the
torus surface, reduces to the conirol of this motion by the fields of two current strings (Fig. 14.15.

Cne current string going along the torus symmetry axis and off into the “infinity™ (closing it-
seif at a distance of the order of the Uriverse radius) excites the magnetic field which by interac-
ting with the magnetic field of the cecond current string,going along the torus forming
circumference axis, gives ihe resulting field along the r-coil screw line on the torus surface. If in
388 we have both the electric charge in the direction of the angle ¢, and the magneticcharge along
the trajactory of motion, which is practically orthogonal to the plane secant to the torus, then the
descriprion cf the fundamenton motion would be complete.

All these problems have to be thoroughly studied and developed in future. Now we can restrict
ouiszlves to that great amount of information given by the already kaownr regularities, which al-
low, as it is shown below, tocalcvlzte the most part of EP and EPV properties. So, we can calculate
all parameters of the fundamenton by using the information we have already obtained.

In our space the principal EP is the proton bacause the concentraiion of proton-antiproton va-
cuum is almost by ten orders greater than thatof electron-positron vacnum, nearest to the former.
Therefore, it is natural tc consider that the fundamenton, being in the basic state in 35S, is map-
pedonto 1S5 as the proton. From this supposition we can determine the fundamernton parameters
and malke the proton parameiers moce correct. First we determine ihe charges of the proton and
fundamenton. TL and the requirement of ihe circular orbit stability [7 ] result in the following
equation for y, in the calculation S8 (Z — 1j:

y 1 M ¢
Yiz-n = (1 - B]z}p “ - g.gc};z {I' = 330.0,'“:_L

X 14.12)
r Zm?’ '

where the index p means that all paramziers correspond to the proton. In Table 16.1 it is shown
that

gﬁm = fem Bf :gmg == Bi (14.13)
Then the equaticn (14.12) becomes

s lg iz M ¢
Yoy = (1 = B, [1 - (- [J.i}p_] [! - 33 - ;ﬁ)p] ;;:—;. (14.14)

»
Itis known that
ehe, -

Yo = 57 FWaa T ) (14.15)
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and

ﬁk:dsla

... I S
M %p (= ‘oo)p k1 wa)p : (14.16)

2
8.k
where a,, 33-'-] = 1.000 889025 is the dimensionless constam for the proton;
l x
ky = l.ODO 004 305 and &¢=1.000 000 351 are the “background” constants of PV (sec sxctions 15
and 16). For the dimensionless constant ¢, according to (7.18) we have:
x (- BD, ke oy

o= . (14.17
a, (1~ gm), (r= wa},

In 38§ the charges of FF ¢, and g, are equal to each other. This equality holds for 85 (3 — 2)
and 285 butin 88 (2 -» ') wehaveq, # g,. The difference of the FF chargesis the relativistic ef-
fect; as the result of that, an electric charge egual to this difference originates in 83 (2 — 1) and
is mapped onto 1SS, retaining its value. In this process of mapping the physical parameters, ihe
dimensionless constant o has the meaning of the ratic of the electvic charge square in 1S5 and in
SS (2 — 1) to the FF charge square in 3SS.

Consequently,

w2
o = lfﬂm—, and (¢? = (&? = ke (14.13)
9,2

Ay

The calculation formulae and certain results of the calcuiation of the paramaters of all EPs are gi-
ven below. To find the numerical value of the global conistant a e put the numerical values of di-
mensioniess internal parameters of the protor into (14.17) and obtain;

(1- B2), = 2.323803 680-10°%; (1 — p?), = 2.554 886 718 -10°%; a = 7.297 352378 .10,

According te the accuracy of the experimeat (known by april 1990) [108 }, this value coincides
with the experimental value of ¢ =7.29 735 04 (61)-10~2, The former has a substantially greater
accuracy than the latter,

We now calculate other parameters of the fundamenton.

According 1o (7.24}, the velocitics of motion of the dipole of the FF charges constituting the
fundamenton in 355 are the following:

3 L atd
=y By i By = By s et



where uw-&330 and n,p-5494 (see tabie 18.1). Taking into account the fact that the masses con-

rected with fundamental charges have different signs,for the mapping of mass from 288 onto 88
(2 — 1) oronto LSS (which is the same in our case) we should write [7]:

1 1= 1m® |
m. = (14.20)
(A< —p

where m, , Im® 1, Im® | are the proton mass in 1S5 and absolute values of masses in 2SS, res-
pectively.

The masses in 288 are mapped onto 388 according to the law: * )
N | mgz} i

)| = — . @ = — 1
i = y|m = .
2" ( Lﬂ‘:] L. 1)3-: ! i | ¢ ’ﬁ(lj) e l)aa

(14.21)

Then the following relation exists between the masses constituting the fundamenton in 385 and
the masses mapped onto SS (Z — 1) and, censequently, onto 1SS (in our case itis the proton
mass}:

m;:)

m_ =
L ‘ﬁgj} 2 - I}sa

ey 32 _pi2
e L vl ‘ (14.22)

- mO D ? - 1)3»21

For the stability of the circular orbit the following condition skould alsn be satisfied:
[m¥] = V9/8 |m{®| , and then we obtain:

('ﬂ‘zj] 2_ 52
P

S '
ll -Vary (—3————-—_54‘1]} T

Ir: (14.23) the mass of a “bare” proton is given without taking into consideration its interac-
iz

tion with PV. Tc take itinto account the factor ?m should be introduced into (14.23) according
2p

ImP 1 =m (14.23)

*)} Her: and further on we omit the lower index p for internal paramelers because all of them
correspond o those of the proton,
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10 the formulae for masses given in Part [V (see table 1€.1). Then the final formula for the calcu-
lation of the mass | mzml for the fundamenton becomes
(n3 87 - 1*?

m‘;’ =m

. (for ag, see table 16.1) (14.24)
(282 -1’7
-vin bl
(m ,6; =5 ji
In (14.23) and (14.24) the positivc part of the fundamenton mass is calculated, because only

that part contributes to the determination of the effective radius of fundamenton and the gravita-
tional interaction censtant.

“gp
* B

The fellowing formulae are valid for these parameters:

2
1

g fic g
G, = —1& = Bt . (i4.25)
3 30
! ) T
le
. G_A’...?1 = _h —.G..L.T;] 4.2
ry= % _:E.’:_ b (14.26)

The determination of the numerical values of 21l these parameters of the fundamentonis of a

special interest. They are determined as the functions of the giobal constants f , cand mpand the

internal parameters of the proton structure obtained in TFF. The internal constants are known
with the accuracy up to nine significant digits. The global constants are determined from the ex-
periment [108 | with the accuracy mainly up to six significant digits. As it is shown in Section 15
the calculation formulae found in TFF allow to obtain the more correct values of the globzl con-
stants:

m,=1.67262 291 -10~** g (ihe experiment — .67 262 31 (10) -10** g);
¢=2.99 792 455 6 - 10" c/s (the experiment — 2.99 792 458 (1.2) -10"° c/s);
%=1.05457 271 0-10~%" ergs (the experiment — 1.05 457 266(63) 10~ erg:s).

Takinginto account these values of the global constants and the givea above values of the in-
ternai parameters n, ., n,, B, . B, forthe protcn we have:

Gy = 6.671776600:107 *g™s7?;

iz
G, h . mY (1427
rp= [—-‘;— =—f;)-=—1'1”—== 1.61 595016 4 107 ¢,
'3 m2 c ¢

The given above value of the constant of the gravitatienal inieraction inside the fundamenton
surprisingly coincides with the constant of the gravitational interaction in macrocosm, determi-
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ned from the experiment and equal to 6.67 20 {41) .107%%g "5, Yet, since TFF allcws more
exact calculation of this constant, it is of interest to compare the given above value of G for the
fundamenton with that calculated fcr the interaction of the proton in macrocosm, i.e. in 138,
found by the formula published in [48 } by V.A. Cratand L.L. Gerlovin:

2 z
i ﬁ‘[—i’—a Ri] kel (14.28)
\k » xm »

The substitution of the curresponding values into (14.28) gives the value by 1.00011630 times
greater than that given in (14.25). It is of interest to note that this value is very close to the ratio
Bip/ Bap= 1.00 011 583. Taking into account the errors of the experimental values used in the
calculation by the formula (14.28),such ceincidence seems to be compiete. [n this case we have 1o
wait for the experimental verification of the difference between the gravitational interactions in
depths of microcosm and in macrocosm, which is predicted here. Physically this difference is
ratherclear: inside the fundamenton the PV infiuence is practically absent while in macrocosin it
cannot be neglected and the va!ucﬁlp Py e:"z / z!’f isone of the important characteristics of PV
(see other sections and [7; 14]).

G=ay—53

The proton radiusin S8 (2— 1) is connected with its mass [7: 14 | by the formula:

R=" 235

A a,m, (forf{gwp] see  table 15.1) (14.20)

where 2s = |/ cosais the coefficient determined by the precession angle. The ratio of the fun-
damenton mass in, =2.17 688 010" 16™* g tc the proton mass is the following:

my/ m, = 1.30 145 700 -10" ; (14.30

and the ratio

i3 g, f (8o, )R,/ 287, = 1.30 145 700 0 10" (14.31)

is of the same value. Since the normalizing factors connected with the structure of EPs and their
interaction with PV in the ratio of the masses and in the ratio of the radii are not equal, the coin-
cidenceof thevaluesin (14.30) and (14.31) is not of a trivial character and is indicative of internal
consistency of calculation methods in TFF.

Thus, the Plank particle which has a number of special names (the “maximon”, the “plan-
keon™), is the primary brick of maiter, i.2. the fundamenton.

The parameters of the fundamenton are mapped onto our space in a natural way so that the
principal particle of matter, i.e. the proton, is observed. Another stabie particle in our space, i.c.
the electron, can also be considered as the mapping of this very fundamenton onto {85. Yet, in
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this case in the formulae of the type (14.19)—(14.24) the velocities of subparticles in the electron
structure appear, and the relation of metric properties substantially changes under the mapping.

It can be shown that any EP represents the mapping of that very fundamenton onto our space
(onto 1885, i.e. the base of the fiber bundle) if the features of the mapping from 35S onto 158 are
taken into account in a correct way. For unstable particles it is also necessary to take into account
the greaily increasing PV influence upon them.



1 EXACT
THECRET!CAL CALCULATION
OF ALL GLOBAL CONSTANTS IN TFF

In TFF a high level of unified consistency of parameters of microcosm particles determined
theoretically is achicved. As it was mentioned above, this level is characterized by such high ac-
curacy that the error may be of only three or four units of the tenth significant digit.

The following result is especially important in TFF. Described in section 12, the relation be-
tween tine physical guartities dimension and that of the space where the quaniities reveal, sub-
stantially influences the mode of calculation of parameters characterizing the essence of marter.
In particular, it influences the method of global constants calculation.

In contrast to the previous ideas on the future possibility of theoretical determination of global
censtanis, our elaborations carried out within the bounds of TFF gave a unique possibility to cal-
culate ALL GLOBAL CONSTANTS, boih dimensionless and, which may sound paradoxical, di-
mensional from THE DIMENSIONLESS CONSTANTS found by the thecry. This possibility is
connectsd with the fact that without exception all global constants, having conventional dimen-
sions in three-dimensional space, are in correspondence with a quantity having a single dimen-
sicnonly {e. g. thatof length, or time, or mass) in the linear space. And in the point zero-dimensional
space any global constant with any dimension is in unambiguous correspondence with a certain
dimensioniess quantity. Therefore, if,for example, we determine the dimensionless value of the
gravitational constant in the zero-dimensional s pace, we can find the numerical value of this con-
stantin centimeters, seconds or grams in the linear space, and then the numerical value of this dimen-
sionial constant in the three-dimensiona! space, where it has the dimension ¢®/gs? in the adopted
by us system of units.

The calculation of numerical values of ginpai constants is carried out from the dimensioniess
constants of TFF. All constants of the theory are the direct consequences of its equations and do
not include any fitting parameters.

In this section formulac are given by which it is possible to calculate theoretically the principai
global constants. The results of this calculation compared with the experimental data are given in
table 15.1.

15.1. Both the fundamental interactions via “strong gravitation” (the A. Salam term) and the
invariant length are found from the following equations. The constant of gravitational interaction
in 358 (between fundamentons) is determined as follows:

2
LT he
o/ S T (15.1)
! !
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where gy, myare the fundamental charge and ihe fundamenton mass. respectively. The gravita-
tional constant in macrocosm (185) is deiermined via the constants of TFF as follows:

fa_n ﬁﬁ
Graero = On 2% 7 l“_ ] fic, (15.2)

where ag Ny, 1, &y By By Rp, m are the parameters of the proton structure; o, , 7ip, are the

invariable constants of both the electromagnetic interaction and the length in macrocosm, respec-
tively.

The universal constant of the electromagnetic field interaction is determined from the equa-
tion:
3 2
Ay = S5 (6 + &)pBoop a7 — 1 | (153
22(1 - 4),a,
where Spr E1pr Egpe Bogp ATE the parameters of the proton structure;

Finy = V978 of the length unit, (15.4)

The ratio of the constants G, and ; is completely determined by the ratio of the permittivitics of
the principal component of FF, i.e. the permitiivities of the proton structure:

2
Su - 5‘1&] ; (15.5)
s ©2p
From (15.1)—(15.5) wehavefor K,/ r;,,,
2 2 2 12
Rie_2x (Mp) (Mp) __S1p%20 _ (15.6)
Tinv "; ﬂ‘,(pgl'ﬂz)!,

From TFF it is known that

i‘.{_ oo h“h mm 2 ])32
my =(ipPi1?-1) :g- - V879 -EZ” TR (5.7
2

where (¥ and g are the velocities of the internal motion of the “first” and the “second™
particles i:énstitutiﬂg the fundamenton structure. From (15.6) and (15.7), taking into account
(15.4), it is easy to calculate the value of R,, in centimetcrs (because r;,, is adopted 1o be
measuredinc.).

15.2. In TFF the proton mass m_ can be calculated by the following formula:

P

i 25,

m, = i
p R]pﬁ]’a"(l_gm}’“_agoo)p

(m, = 7,2 g. (15.8)
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Numerical values of global
Nos Name Symbol The
- - (2~ 1) (calculation
a=0 d=1 $5,d=2)
Fundamenton =3
TR bl =k, | = 1615950165 - 10733 ¢ =
3 oo my - 618830965 2 10% ¢ 217684630210 g
Constant of funga-
2. | menton field a, 1 1 1
interaction
Consuant of funda- Yy N
4. menion gravitational and 1 - 261129493410 ¢
interaction Gy (G )
Furndamerton  charge T
5 | tn cops anii) o 1 1 5622747925 10
5. |Proton radiuz R, — 2207120686107 2207120686 -107 ¢
Compton  jength e o'
7. of pioton *’ - 2.103089653 ‘107" ¢ 2103089653 10" "¢
8. |Proon mass m, — 4754909038 10" ¢™! 1672622915 10724 g
9 Constant of proton - ey
* | field  iuteraction p = =
Constart of proton
10. | gravi'ational Yo - - 3.229101272 107 &
interaction
11. | Proton  charge ¢ _ _ _
" | din c-g-s units) 4
m
12. | katio my 1o mp = — 130 145700 0 -101® 1.30145 7000 102
»
13. | Electron  radius R, — 4173536747 .10 ¢ 4173536747 107" ¢
14. | Electron mass m, - 2.58 960 4550 -10'0 ¢! 9.109389780.10" ¢
Constant of electron =3 - =3
15. field  interaction a, - 7.297320765 ‘10 7.297320765 - 10
Eleciron charge =10
18 | fia cgt unit) e, - - 4803196260 -10
Compton  length -11 111
17. of - Eleciiae t‘ —_ 3861593402 107" ¢ 3861593402 107 ¢
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Table 15.1

constants in various subspaces

ory

Experiment

d=3.1 Information in_ 1SS Direct  measurement
Y from other SS in 183
- no data —
=S
2176846802107 g i el -
1 1 —
6.671776600 - 1072 ¢%/gs* no data —
=
5622747925 10 | fid et =

2207120686 10714¢

~ (10741071 ¢

2.103089653 - 107M¢

no data

1672622915107 g

16726231(10) - 107245

7.297353232 1072

7297353019 (61 - 1073

7207353019 61 - 107°

no data

4803206045 - 10710

48032068 (15) - 10710

48032068 (131 - 10740

no data

4173536747 -1071¢

no data

9.109389780 10728 g

9.10 93897 (54) - 10" g

9.1093897 (54) 10"y

7.297320765 - 1072

no data

no data

4.803196260-1071°

no data

no datk

3861593402107 ¢

3.86 159323 35) - 101 ¢




Nos

Name

Sg::-

Numerical values of global

The
= i (2+1) (calculation
a=9 4=l 3,42
m
18. | Ratio mp o, -”—l-ﬂ - 183 6.15 2537 1836152537
[
Universal  eleciro-
19 | magnetic  interaction Ay - - 7297352177 - 1073
consiani
el =5 % g
Quermt  SAordecs 6.67254 939751078 6.67 254 93971078 c3/gs?
20 pic constant of 3. 3 _56 .2
" | gravitational Gpe 1 c¥gs 2611597402 - 10756 %)
interaction
; Gy
21. | Ratio C—‘”toy’. 53 1000115831 1.000115831
i
Invariable  wnit P
2 | e Finv 1 Yo/bc Vossc
S ' PO, 4 1 1 105 4572710-107 erg-s.
24. | Light  welocity c 1 1 299792455 5 - 10" /s
25. | Rydberg  constant R, — 1097373181 - 105%™ 10907373181 105!
Bolizmans BTl
26: constant k e s 138065 940 8-10" " erg/K
27. |HMubble parameter Hy = - 5012186121 - 1078 571
Cnsmological 083 =2 - . 1p-36 -2
28. | o i — | 3829517635108 ¢ 279584730 6 - 1073 ¢
Background
29. | dielectric  constani £y - - 1.00 000 035 1
of  vacuum
) i ko-
Universal  coefficient !
30, | of interactions @, - - 1.00 000 430 5
-
. = k=
Protonic coelficient r
3i of  istcraction “p - — 1.00 000 433 2
-I‘.le
Time omprmnsnl o - .
32 | of prown metric Eop o 2310830382 1074
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Tahle 15.1 continuation

constants in vardious subspaces

ory Experiment
d=3.1 Infcrmation in 1SS Direct  measurement
=X from other S8 ir 188
183 6.15 2537 183 6.15 270 1 (37) 183 6.15 2701 (37)

7297352177 1073

no data

na daw

6672549397 -107%c¥/gs?

6.67259(85) -1073c3/gs?

6.67259(85) -1074c3/gs?

1.00011 5831

no data

no data

Y9/8 ¢

no data

1054572710 - 10 erg s

105 457266 (63) 110> erg s

1.05 457 266 (63) - 107 erg s

2.997924555 -101%¢/s

299792458(1.2) -10'%¢/s

2.99792458(1.2) -10'%¢/s

1097373181-105:71

1.0973731571 (4) -10° ¢!

109737315 71¢4) -105c70

1.380659408 1076 erg/K

138065 8 (12) -10*erg/K

1580658 123 10 ¥ erg/K

5012186121-107%57!

(5100 -107H 57t

2795847306 -107% 2

<3-10°%82 —

1.00 000 035 1 no data b
1.00000 4305 i it no daw
100 0004332 o6 dbia no dam
2310830382 - 1074 o data o data
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Numerical wvalues of global

Nos Name Symbol The
i = (2-+1) (calculation
=9 d=1 3. 425
Time component i
33. |of electron metric £o0e - - 3180041736 - 107!
tensor
Firs1  dielectric ey ,81'
34. fconstant of prown |%lp =Flp| — - (1.002329216)"
siructure
Second  dieleciric e, =2 g i
35. | constant of protwn 2p ip — (1.002561431) (1.00256143 1)
structure
Weak inieraciion
3. | dius Rueak - - -
Field weak
37. |interaction con- Fpeak = 9.19398 7430 - 1071 9.193987430 - 107"
stant
Graviatiofial 103 897 4883 10'7 3/gs?
38. | constamt of weak Ywesk — -
interaction b (406648785 1-10742¢?)

in the calculation 8S (2 - 1) the electron radius is determined from the proton structure radius

Rlpas follows:

et (-2

R, = Rlp‘\f'ﬁf' p iz
gptpt1p (1~ Bon)p (1
wherek, = a,/a,.

W12 0

- 350 f (1 - B2

The value of the electron mass is easily calculated as follows:

m_=

- 1 2:! :11
£ Rlec le bt l'-"l‘_

my I from (I5 8)

m l’rom (15.10) &

(15.9

(15.10)

15.3. The constant of the electromagnetic interaction for the electron is determined by the

equality

=i 2
oo 3R,
¢ 2I{z 'HL:

it

J

(15.1D

The constant of the field interaction for the proton is determined by the equality:




Table 15.! continuation

consiarts in  varicus subspascs

ory Experiment

d=3.1 Informaiion ia 1SS Direct  measuremeni

. from other SS in 1SS

3.180041726- 10714 no data nc data

(1062329216 no data 0o data

(100256142 17! no datz no dea

216123644 1- 1076 ¢ no data %0 data

9.193987430 - 107 nc data no dan

1.03897 4853 - 107 ¥/ps? a0 data no data

U AN

@ - 7 i (15.12)

= g, (1= 850, (1= 38p)
wherek; = og, /o, -

The constant of the field interaction fur the fundamenton is determined as follows:

= — 1l et (15.13)

f ags (BY Bepdidopn2a P 23l pi’
where

3z
B a n
a, = ——=Lele (15.19)
3
= 20 "Mp Xy ‘r

The background permittivity of vacuum differs from one anly by the eighth decimai place. Yet it
is of importance for our accurate calculations. In TFF the numerical value of r,fis determined ac-

cording o the following condition (see Part 1V):

Yoy

o= g (15.15)

m



Yet it can also be determined within the scope of the calculation of global constants carried out he-
re, according to ihe following condition for the consgtant of the field interaction cf the fundamen-
ton:

ap=1. (15.16)
Then salving simultaneously (15.13), (15.14) and (15.15) we find a;and £

153.4. In contrast to the known theories, in TFF therc arc three constants of electromagnetic
interaction, differing from each other only by the sixth significant digit. But this fact is of princi-
cle value. We have already calculated two constants. They are the electromagnetic interaction
constant g, , determined from (15.3), and that of tlie lepton interaction a,, determined via the
electron parameters from (15.11). Beside=s, there is a constant of the electromagnetic interaction
for hadrons, determined via the proton parameters from (15.12). Therefore, to make the calecu-
lation suitahle, the following coefficients were introduced into the calculation formulae:

kp=ay (15.17)
a
k= 22 (15.18)

15.5. The universal constant ¢ (the velocity of light) in the subspaces with d=0and 2= 11s
equal (o the dimensionless unit. But in the subspaces with d =2 and d = 3,1 it is unambiguously
determined via che values of the fundamenton radius r,and the dimensionless constants of TFF

by the following formula:

k

c == (15.19)
Ml

where

T N P
= 52T 8e)y (1= 3a) kp (15.20)

2 2
2v2 Ly
15.6. The universal constant % (the Plank constant) is also determined via r,and the constants
of TFF by the following formula:

h=rpky, (15.21)
where
1
K, = —"22% 15.22)
a, nlpt’ %
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15.7. The Rydbergcorstant. According to physical meaning, theconstantof radiation ® _, in-
troduced by Rydberg, is the raiio of the maximal frequency of the given particle radiation 1o the
velocity of light, i.e.

v

R, = ‘msdm (15.23)

c
In the proper coordinate frame the first harmonic, which 2 particle can radiate, corresponds to its
natural frequency v, . For an electron (a double-particle) this frequency is mapped onto the first
subspace in the form:

2
Yrad.max = V9/8 :":' (1- B:)E Ve (15.24)
Since
R = zsﬂiﬁﬁla
1 m‘cﬁlz !
and
g c
Ve = 3R (15.25)
then
- gl
R, = V978 Pef2eMe 0P (15.26)

ﬂLt i
As itis known, there is the following relation between R and other global constants:
2 4 2
R T TR a5.27)
4nfi
From (15.26) and (15.27) we have:

2 2z
‘%’-=v’9xaﬂ:}-ﬁﬂt. (15.28)
Le
or
]
- P“ —.ﬁ‘%)"; ’91; ”'zg]'
o, = 21,.2& | N
\ Le

which confirms (15.11).

From (15.27) it is not difficult 10 calculate the value of the Rvdberg constant for the electron.



The value R, , observed in most experiments, is connected not with a,,but with the coastant
of the el=ctromagnetic interaction of the proton e, and with the influenceof e T erefore, the ob-
served value of this constant should be determined by the formula:

wi_(a )

Ry (experimenty = e (15.29)

where 71, is the electron mass in the system of units% = ¢ = 1 ,i.e.inc”

15.8. The Huktble parameter. As it was mentioned above, the vacuum theory of gravitation
{VTS) predicts thz existence of a new pnenomenon calied the “gravitational viscosity”, which
should reveal in vacunm. Being aware of ener-gy loss due to the “gravitational viscosity” we can
determine the value of the Hubble parameter:

L]
JE ds
H, =4 {15.30)
n sh

where E, is the photon energy loss per period; sis the distance to the light source. The formuia for
the Hubbie parameter caiculation is of tne fcllowing form:

W2gmlc %
Hﬂ = 1 Fi _L (I - m—} ds, (15.31)

2ela s

where m, is the electron mass; « is the fine structure constant (the constantof the electromagnetic
interaction); R is the radius of thz EPV struciure; x is the wave-lergth of light whose “gravitati-
onal viscosity" is calculared

[tis not diificult to see that —fm << | and then, with the acruracy up to one, we have:
e

3V2
Hy = —-&. (15.32)

2neh? a""

15.9. The Boltzmann constant. Ir physical meaning, the Boltzmann consfant is tne transitio-
nal factor from temperature to energy. Within the bounds of TFF for determination of the Boitz-
mann constant the following formula was derived:

1) -4, m,
3””\- gm;."?(n = 3gm)"‘

(15.23
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e
where 25, = Eo—:“ = \'_:3_ ; a, is the angle of the string precession in the eleciron structure;

a;% 1-- xoo:' p (1 - ng)';‘ is the normalizing factor differing from one by the sixth decimal
place.

The numerical value of this constant given in table 15.1 was obtained by this formula.

15.10. Czlculation of the numerical valuc of ihe velocity of light can be carried out not only by
(15.19) but also by the following simple relaticn between ihe principal constants of our great Uni-
verse, whose dimensions are invariable for the subspace withd=3,1.

c= -LEL (15.34)
Rry

For the 2xact calculation of the velocity of light it is necessary under calenlation of H to introduce
the normalizing coefficient, differing from one by the third decimal place, into the approximate
formuia (15.32):

24

3 (15.35%
7y (1= g0 (1= 3800,
15.11. The radius of the Universe is determined by such simple formula:
T(Universe) = £ = 598 0579606-10" c (15.36)
Then for our macrouniverse the cosmological term is
Muaiversey = 7—— = 2.79 5847306 10" c™2. (15.37)
(Universe)
At the same time for microuniverse with the radius rf!he A-term is
Ngioes ;,- = 3.829517635-10% ¢2, (1£.38)

nlma
This fact represents the radical difference between macrocosm and submicrocosm.

15.12. The numerical values of global constants in the subspaces withd =0, d=1,d=2,d =
3. 1, which are obtained thecretically, are showa in the summary table of their calculation (see
table 15.1). For comparison, the numencal values of these constants, obtained from the experi-
ment, are also shown.

In the table columns with the experimertal data two values are shown: the first is taken from
the direct measurements, the secord from the theoretical ireatment of the indirect experimental
data. Iin TFF the latter is interpreted as the information taken from the indirect observations of
the processes occurred in other subspaces. For example, the proton structure dimensions are es-
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timated now by treating the experimental data on the EPs dispersion. The dispersion process oc-
curs in 28§, whereas in 1SS we observe not the dispersion process itself but only its result, which
allows to estimatz the EPs dimensions under the dispersion.

In thosc rases when the parameter cannot be observed in a given SS in principle. thereisa
dash in the table, and wheii its value has not been got, it is written in the table: “no data”.

Résumé

1. Features of purely gravitational interaction are discussed in detzil in section 11. We say
“purely gravitational” since, being a particular case of the universal interaction, it is due tc mass
and is completely determined only by mass. Gravitationa! interaction differs from other manifes-
tations of the fundameantal field (strong, electromagnetic, weak interacticns) by the fact that itis
in conformity not with the fields, the sources of which are particles themsclves, but with the uni-
versal field of 1ensions in physical vacuum, which reveals in all points of our Universe. These ten-
sions put a certain pressure upon all elementary particles. Yet, soine elements of the structure do
not lz2t the force lines of this interaction pass through; they screen them. The screering of force
iines, connecied with tensions in vacuum, causes the atiraction of particles, i.e. it causes that kind
of interaction which we cali gravitational. This section contains the basis of mathematical appa-
ratus for calculation of the gravitational constant under macroscopic interaction in the Universe
and a'so shows that this interaction is inherent in al! structures of matter which have mass.

2. In section 13 the calculation of subparticles precession in the structure of elementary par-
ticles in the calcuiation subspace is given in detail. Just in the calculation subspace, since the dy-
namics of motion, the number of subparticles, the characier of interaction depend on which kind
of subspace we consider them in. To calculate the preperiies of particies observed in the first sub-
space we have o consider the calculation subspace as the mapping of the dynamics of some or ot-
her process or structure in the second and third subspaces onto the first subspace. Just this is
observed in the first subspace.

The precession of subparticles sirictly defined in the szcond subspace is deformed in the cal-
culation subspace, and in such deformed state it1s mapped onto the first subspace. This procedu-
re results in the foilowing. An ordinary mechanical motion would be observed in the second
subspace, if we could fix it. But in fact, it is mapped onto the first subspace and reveals there asa
phenomenon called now the “spin of particles”.

Thus, the spin of particles is not an ordinary characteristic of the mechanical motion due to
lhe only reascn that an ordinary mechanical motion occursin the second subspace, and the result
of this rootion is mapped as a projection of the moment of particles on the precession axis onto the
first subspace. The spin is the projection of the mechanical moment of particles in the second sub-
space onto the precession axis. The mechanical moment can be observed only in the second sub-
space and can not be observed either in the calculation or first subspaces.
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3. In section 14 the calculation of all principal characteristics and features of the fundamenton
structure is made. The fundamenton structure ia the third subspace and the features of the fun-
damenton motion in this subspace are discussed. liis also discussed how this process is mapped
onio the first subspace and indirectly, as it can not be directly observed, reveals in our experi-
ments. The mapping from the third subspace onto the first one can be perceived in it only indirec-
tiy. In the first subspace we direcily observe the mappings of everything occurring in the second
subspace. The mappings from the third subspace onto the first one is connected with a certain cor-
rection. [t can even be said that the mappings from the third subspace onto the first one are the
result of calculation of the characteristics, which we couid see in the first subspace, if those char-
acteristics were mapped in such a way that they could be observed. A fundamenton has definite
characteristics in the third subspace. Therefore, from the point of view of tha first subspace, we
should interpret it in a different way, taking into account the transformation of the space and time
scales. Thus, thai which would be observed in the first subspace from the third one is just the form
of the fundamenton existence, which coincides with the Plank particle. We have already mentio-
ned that this particle has different names: plankeon, maximon etc. We shall never be able to ob-
scrve this particle in the first subspace. But, if we had observed this patricle it would have had the
characteristics determined by the calculation. These characteristics are exactly calculated and
given in this section.

4. The results obtained in TFF enable us to make a theoretical calculation of many global con-
stants. We have mentioned how the fing structure constant is calculated. Besides, TFF gives pos-
sibility to calculate other global constants. Methods of calculation of a whole number of global
constants and numerical values of the results of this calculation are given in section 15.
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